• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Hybrid Laser Ablation of Al2O3 Applying Simultaneous Argon Plasma Treatment at Atmospheric Pressure

C. Gerhard1, S. Roux2, F. Peters3, S. Brückner1, S. Wieneke3, W. Viöl4

1 Clausthal University of Technology, Institute of Energy Research and Physical Technologies, Leibnizstrasse 4, 38678 Clausthal-Zellerfeld, Germany
2 Institut d'Optique Graduate School, RD 128 - Campus Polytechnique, 2, Avenue Augustin Fresnel, 91127 Palaiseau Cedex, France
3 University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Strasse 99, 37085 Göttingen, Germany
4 Fraunhofer Institute for Surface Engineering and Thin Films, Application Center for Plasma and Photonic, Von-Ossietzky-Strasse 99, 37085 Göttingen, Germany

received September 24, 2012, received in revised form November 16, 2012, accepted January 9, 2013

Vol. 4, No. 1, Pages 19-24   DOI: 10.4416/JCST2012-00034a

Abstract

In this work, we present a hybrid laser-plasma ablation technique for material processing of ceramics. Atmospheric pressure argon plasma treatment as well as laser ablation and hybrid laser-plasma ablation experiments were performed on aluminium oxide in order to investigate the impact of the assisting plasma in terms of material removal efficiency and energy-related aspects. It was shown that by means of pure plasma treatment, surface roughness was decreased, resulting in an increase in surface energy and polarity, respectively. Further, by simultaneously applying a plasma beam at atmospheric pressure to a laser ablation process, the ablated area on the aluminium oxide surface was increased while the form error was partially reduced. Spectroscopic measurements of the ablation plume for pure laser ablation and laser-plasma ablation were performed. It was shown that with the assisting plasma, characteristic spectral lines of aluminium were intensified. Further, other Al-spectral lines that were not observed in the case of pure laser ablation were detected, corresponding to higher material removal owing to energetic synergies of both the laser ablation process and the assisting plasma.

Download Full Article (PDF)

Keywords

Aluminium oxide, laser ablation, atmospheric pressure plasma, hybrid laser-plasma ablation

References

1 Lee, J.-M., Cho, I.-T., Lee, J.-H., Cheong, W.-S., Hwang, C.-S., Kwon, H.-I.: Comparative study of electrical instabilities in top-gate InGaZnO thin film transistors with Al2O3 and Al2O3/SiNx gate dielectrics, Appl. Phys. Lett., 94, 222112, (2009).

2 Khan, J.: A lapping and polishing process to achieve high quality alumina surfaces for applications in device fabrication, Thin Solid Films, 220, 222 – 226, (1992).

3 Kawakami, K., Suda, M., Aihra, M., Fukuoka, H., Hagiwara, Y., Tekeshita, K.: Electrical detection of end point in polishing process of thin film heads, J. Appl. Phys., 61, 4163 – 4166, (1987).

4 Tönshoff, H.K., Emmelmann, C.: Laser cutting of advanced ceramics, CIRP Ann., 38, 219 – 222, (1989).

5 Perrie, W., Rushton, A., Gill, M., Fox, P., O'Neill, W.: Femtosecond laser micro-structuring of alumina ceramic, Appl. Surf. Sci., 248, 213 – 217, (2005).

6 Kim, S.H., Sohn, I.-B., Jeong, S.: Ablation characteristics of aluminum oxide and nitride ceramics during femtosecond laser micromachining, Appl. Surf. Sci., 255, 9717 – 9720, (2009).

7 Kim, S.H., Balasubramani, T., Sohn, I.-B., Noh, Y.-C., Lee, J., Lee, J.B., Jeong, S: Precision microfabrication of AlN and Al2O3 ceramics by femtosecond laser ablation. In: Proceedings of SPIE 6879, 2008.

8 Ho, C.Y., Lu, J.K.: A closed form solution for laser drilling of silicon nitride and alumina ceramics, J. Mater. Process. Tech., 140, 260 – 263, (2003).

9 Klimentov, S.M., Garnov, S.V., Kononenko, T.V., Konov, V.I., Pivovarov, P.A., Dausinger, F.: High rate deep channel ablative formation by picosecond-nanosecond combined laser pulses, Appl. Phys. A, 69 [Suppl.], S633 – S636, (1999).

10 Kononenko, T.V., Garnov, S.V., Klimentov, S.M., Konov, V.I., Loubnin, E.N., Dausinger, F., Raiber, A., Taut C.: Laser ablation of metals and ceramics in picosecond-nanosecond pulse width in the presence of different ambient atmospheres, Appl. Surf. Sci., 109/110, 48 – 51, (1997).

11 Geiger, M., Becker, W., Rebhan, T., Hutfless, J., Lutz, N.: Increase of efficiency for the XeCl excimer laser ablation of ceramics, Appl. Surf. Sci., 96 – 98, 309 – 315, (1996).

12 Viöl, W., Wieneke, S., Damm, R., Brückner, S.: Hollow funnel shaped plasma generator, WO 2011095245 (A1), 2011.

13 Brückner, S., Rösner, S., Gerhard, C., Wieneke, S., Viöl, W.: Plasma-based ionisation spectroscopy for material analysis, Mater. Test., 53, 639 – 642, (2011).

14 Oliveira, V., Orlianges, J.C., Catherinot, A., Conde, O., Vilar, R.: Laser ablation of Al2O3-TiC: a spectroscopic investigation, Appl. Surf. Sci., 186, 309 – 314, (2002).

15 Gerhard, C., Roux, S., Brückner, S., Wieneke, S., Viöl, W.: Low-temperature atmospheric pressure argon plasma treatment and hybrid laser-plasma ablation of barite crown and heavy flint glass, Appl. Optics, 51, 3847 – 3852, (2012).

16 Mohri, N., Fukuzawa, Y., Tani, T., Saito, N., Furutani, K.: Assisting electrode method for machining insulating ceramics, CIRP Ann., 45, 201 – 204, (1996).

17 Lawrence, J., Li, L.: Wettability characteristics of an Al2O3/SiO2-based ceramic modified with CO2, Nd:YAG, excimer and high-power diode lasers, J. Phys. D., 32, 1075 – 1082, (1999).

18 Kaelble, D.H.: Peel adhesion: influence of surface energies and adhesive rheology, J. Adhes. Sci. Technol., 1, 102 – 123, (1969).

19 Owens, D.K., Wendt, R.C.: Estimation of the surface free energy of polymers, J. Appl. Polym. Sci., 13, 1741 – 1747, (1969).

20 Roth, J.R.: Industrial Plasma Engineering Vol. 2. 1st edition. Institute of Physics Publishing, London, 2001.

21 Agathopoulos, S., Nikolopoulos, P.: Wettability and interfacial interactions in bioceramic-body-liquid systems, J. Biomed. Mater. Res., 29, 421 – 429, (1995).

22 Gerhard, C., Roux, S., Brückner, S., Wieneke, S., Viöl, W.: Atmospheric pressure argon plasma-assisted enhancement of laser ablation of aluminum, Appl. Phys. A, 108, 107 – 112, (2012).

23 Bogaerts, A., Gijbels, R.: Comparison of argon and neon as discharge gases in a direct-current glow discharge – a mathematical simulation, Spectrochim. Acta B, 52, 553 – 565, (1997).

24 Rains, R.K., Kadlec, R.H.: The reduction of Al2O3 to aluminum in a plasma, Metall. Mater. Trans. B, 1, 1501 – 1506, (1970).

25 Fridman, A.: Plasma Chemistry. 1st edition. Cambridge University Press, Cambridge, 2008.

26 Bues, I., Haag, T., Richter, J.: Transition probabilities, broadening and shifting of neutral argon lines. In: Institut für Experimentalphysik der Universität Kiel Technical Report. Christian-Albrechts-Universität, Kiel, Germany, 1969.

27 Kaufman, V., Hagan, L.: Spectrum and energy levels of single ionized aluminum (Al II), J. Opt. Soc. Am., 69, 232 – 239, (1979).

28 Sawyer, R.A., Paschen, F.: The first spark spectrum of the aluminium Al II, (in German), Ann. Phys., 389, 1 – 19, (1927).

29 Isberg, B.: The spectrum of doubly ionized aluminium, Al III, Ark. Fys., 35, 551 – 562, (1968).

30 Eriksson, K.B.S., Isberg, H.B.S.: The spectrum of atomic aluminium, Al I, Ark. Fys., 23, 527 – 542, (1963).

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2017 Göller Verlag GmbH