Articles
All articles | Recent articles
Submicrometer Silica Spheres Generated by Laser Fuming
C.M. Gomes1, R. Müller1, J. Günster1, T. Mühler2, R. Görke2, J.G. Heinrich2
1 BAM Federal Institute of Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany
2 Clausthal University of Technology, Institute of Nonmetallic Materials, Zehntnerstr. 2a, 38678 Clausthal-Zellerfeld, Germany
received September 19, 2012, received in revised form January 15, 2013, accepted January 30, 2013
Vol. 4, No. 1, Pages 11-18 DOI: 10.4416/JCST2012-00033
Abstract
The production of agglomerate-free SiO2 particles exhibiting a monomodal distribution of particle sizes of around 300 nm by means of direct laser fuming of micrometric SiO2 powders has been successfully demonstrated. With a 12 kW cw CO2 laser system, a production rate of up to 1 kilogram powder per hour was achieved. Almost ideal spherical amorphous SiO2 particles in a broad particle size distribution between 10 nm and several 100 nm (d50 ≈ 300 nm) were synthesized. Several observations suggest weak agglomeration forces between the particles. A temperature reduction of 200 °C for sintering powder compacts was observed.
Download Full Article (PDF)
Keywords
Laser, SiO2, nanopowder
References
1 Deorsola, F.A., Vallauri, D.: Synthesis of TiO2 nanoparticles through the gel combustion process, J. Mater. Sci., 43, 3274 – 3278, (2008).
2 Brook, R.J.: Materials science and technology – a comprehensive treatment, from processing of ceramics. Part I, Vol. 17A, VCH, Germany, 1996.
3 Knieke, C., Romeis, S., Peukert, W.: Influence of process parameters on breakage kinetics and grinding limit at the nanoscale, AIChE J., 57, [7], 1751 – 1758, (2011).
4 Helble, J.J.: Combustion aerosol synthesis of nanoscale ceramic powders, J. Aerosol Sci., 29, [5 – 6], 721 – 736, (1998).
5 Kammler, H.K, Madler, L., Pratsinis, S.E.: Flame synthesis of nanoparticles, Chem. Eng. Techn., 24, [6], 583 – 596, (2001).
6 Kammler, H.K., Mueller, R., Senn. O., Pratsinis, S.E.: Synthesis of silica-carbon particles in a turbulent H2-air frame aerosol reactor, AIChE Journal, 47, [7], 1533 – 1543, (2001).
7 Marshall, B.S., Telford, I., Wood, R.: A field method for the determination of zinc oxide fume in air, Analyst, 96, 569 – 578, (1971).
8 Carroz, J.W.,Odencrantz, F.K., Finnegan, W.G., Drehmel, D.C.: Aerosol generation to simulate specific industrial fine particle effluents, Am. Ind. Hyg. Assoc. J., 41, [2], 77 – 84, (1980).
9 Sokolowski, M., Sokolowska, A., Michalski, A., Gokieli, B.: The "in-flame-reaction" method for Al2O3 aerosol formation, J. Aerosol Sci., 8, 219 – 229, (1977).
10 Bickmore, C.R., Waldner, K.F., Treadwell, D.R., Laine, R.M.; Ultrafine spinel powders by flame spray pyrolysis of a magnesium aluminum double alkoxide, J. Am. Ceram. Soc., 79, [5], 1419 – 1423, (1996).
11 Bickmore, C.R., Waldner, K.F., Baranwal, R., Hinklin, T., Treadwell, D.R., Laine, R.M.: Ultrafine titania by flame spray pyrolysis of a titanatrane complex, J. Eur. Ceram. Soc., 18, [4], 287 – 297, (1998).
12 Cannon, W.R., Danforth, S.C., Flint, J.H., Haggerty, J.S., Marra, R.A.: Sinterable ceramic powders from laser-driven reactions: I, Process description and modeling, sinterable ceramic powders from laser-driven reactions: II, Powder characteristics and process variables, J. Am. Ceram. Soc., 65, [7], 324 – 335, (1982).
13 Lee, D., Choi, M.: Control of size and morphology of nano particles using CO2 laser during flame synthesis, J. Aerosol Sci., 31, [10], 1145 – 1163, (2000).
14 Ready, J.F., Farson, D.F., Feeley, T. (Eds.), LAI Handbook of laser material processing, ISBN: 0912035153, Springer-Verlag, 2010.
15 Sysoev, V.K., Masychev, V.I., Papchenko, B.P., Ya Rusanov, S., Yakovlev, A.A., Glukhoedov, N.P.: High-rate IR laser vaporization of silica glass, Inorg. Mater., 39, [5], 634 – 640, (2003).
16 Michel, G., Mueller, E., Oestreich, C., Staupendahl, G., Henneberg. K.H.: Ultrafine ZrO2 powder by laser vaporization: preparation and properties, Mat.-Wiss. u. Werkstofftech., 27, 345 – 349, (1996).
17 Kurland, H.-D., Stoetzel, C., Grabow, J., Zink, I., Mueller, E., Staupendahl, G., Mueller, F.A.: Preparation of spherical titania nanoparticles by CO2 laser vaporization and process-integrated particle coating, J. Am. Ceram. Soc., 93, [5], 1282 – 1289, (2010).
18 Kurland, H.-D., Grabow, J., Müller, F.A.: Preparation of ceramic nanospheres by CO2 laser vaporization (LAVA), J. Eur. Ceram. Soc., 31, [14], 2559 – 2568, (2011).
19 Günster, J., Heinrich, J.G., Schwertfeger, F.: Laser sintering of ultra pure SiO2 crucibles, Int. J. Appl. Ceram. Technol., 3, [1], 68 – 74, (2006).
20 Wendel, M.,Clasen, R.: Investigations into the sintering of nanoscale borosilicate glass powder (in German) at the 85. Glasetchnischen Tagung der DGG, Saarbrücken (2011).
21 Tso, S.T., Pask, J.A.: Reaction of fused-silica with hydrogen gas, J. Am. Ceram. Soc., 65, [9], 457 – 460, (1982).
22 Bondar, V.V., Lopatin, S.I., Stolyarova, V.L.: High-temperature thermodynamic properties of the Al2O3-SiO2 system, Inorg. Mater., 41, [4], 362 – 369, (2005).
23 Snytnikov, V.N., Snytnikov, VI.N., Dubov, D.A., Zaikovskii, V.I., Ivanova, A.S., Stoyanovskii, V.O., Parmon, V.N.: Production of nanomaterials by vaporizing ceramic targets irradiated by a moderate-power continuous-wave CO2 laser, J. Appl. Mech. Tech. Phy., 48, 292 – 302, (2007).
24 Günster, J., Oelgardt, C., Heinrich, J.G., Melcher, J.: The power of light: Selforganized formation of macroscopic amounts of silica melts controlled by laser light, Appl. Phys. Lett., 94, 021114, (2009).
25 Lide, D.R. (editor): Handbook of chemistry and physics, 87thedition, CRC Press, Florida, 2006.
26 Clasen, R.: Production of very pure quartz glasses with the sintering of sub-microscopic glass particles, (in German), Faculty of mining, metallurgy and geosciences. Aachen, RWTH Aachen. Dr. habil Thesis: 464, (1989).
27 German, R.M.: Sintering theory and practice. John Wiley & Sons, Inc, New York, Chichester, Brisbane, Toronto, Singapore, 1996.
28 Scholze, H.: Glas - Natur, Struktur und Eigenschaften, (in German), Springer Verlag, Berlin, Heidelberg, New York, 1988.
29 Zarzycki, J.: Glasses and the vitreous state. Cambridge University Press, Cambridge, 1991.
30 Scholze, H.: The influence of viscosity on hot stage microscope measurements of glasses, (in German), Ber. der DKG, 39, [H1], 63 – 68, (1962).
31 Barns, J.R., Hoole, A.C.F., Murrell, M.P., Welland, M.E., Broers, A.N., Bourgoin, J.P., Biebuyck, H., Johnson, M.B., Michel, B.: Characterization of electron beam induced modification of thermally grown SiO2, Appl. Phys. Lett., 67, [11], 1538 – 1540, (1995).
32 Matsunaga, A., Kinoshita, C., Nakai, K. Tomokiyo, Y.: Radiation-induced amorphization and swelling in ceramics, J. Nucl. Mat., 179 – 181, [1], 457 – 460, (1991).
33 Burden, A.P., Hutchison, J.L.: An investigation of the electron irradiation of graphite in a helium atmosphere using a modified electron microscope, Carbon, 35, [4], 567 – 578, (1997).
34 Nikonorov, N.V., Sidorov, A.I., Tsekhomskii, V.A., Nashchekin, A.V., Usov, O.A., Podsvirov, O.A., Poplevkin, S.V.: Electron-beam modification of the near-surface layers of photosensitive glasses, Tech. Phys. Lett., 35, [4], 309 – 311 (2009).
35 Toth, M., Lobo, C.J., Lysaght, M.J., Vladár, A.E., Postek,M.T.: Contamination-free imaging by electron induced carbon volatilization in environmental scanning electron microscopy. J. Appl. Phys., 106, [3], 034306, (2009).
36 Vladár, A.E., Postek, M.T.: Electron beam-induced sample contamination in the SEM, Microsc. Microanal., 11, [2]. 764 – 765, (2005).
Copyright
Göller Verlag GmbH