Articles
All articles | Recent articles
Mechanical Characterization of PZT Ceramics for Multilayer Piezoelectric Actuators
R. Bermejo, M. Deluca
Institut für Struktur- und Funktionskeramik (ISFK), Montanuniversitaet Leoben, Peter-Tunner Strasse 5, A-8700 Leoben, Austria
received July 22, 2012, received in revised form August 01, 2012, accepted August 28, 2012
Vol. 3, No. 4, Pages 159-168 DOI: 10.4416/JCST2012-00025
Abstract
Multilayer piezoelectric actuators (MPA) are commonly used to control injection valves in modern combustion engines operating in a temperature range from -40 °C up to 125 °C. They consist of a stack of very thin piezoceramic layers, mostly based on Lead Zirconate Titanate (PZT) material with interdigitated metallic electrodes in between. In this work the mechanical properties of both pure piezoceramic material and the multilayer structure are investigated in terms of strength and crack growth resistance. The results of strength tests are interpreted in the mainframe of Weibull theory, and fractographic analyses are performed in order to get information about the weakest links in the microstructure. The crack growth resistance is determined using the single-edge V-notched beam (SEVNB) method in both materials to estimate the influence of the electrodes on crack propagation. The influence of the texture (i.e. domain-orientation) is assessed with indentation techniques under combined mechanical and thermal loads. In addition, with the aid of Raman spectroscopy it is shown that crack growth anisotropy is intimately linked with domain switching segregation; cracks arrest earlier when propagating along a direction where domain switching is highly favored. Based on experimental results, guidelines for an improved design of MPA are also given.
Download Full Article (PDF)
Keywords
Piezoelectric multilayer actuator, domain switching, strength, fracture resistance, Raman spectroscopy
References
1 Uchino, K.: Piezoelectric actuators and ultrasonic motors. In Electronic Materials: Science and technology. H.L. Tuller, Kluwer Academic Publishers, (1997).
2 Setter, N.: Piezoelectric materials in devices: Ceramics laboratory, EPFL, Swiss Federal Institute of Technology, (2002).
3 Pritchard, J., Bowen, C.R., Lowrie, F.: In multilayer actuators: Review, Vol. 100. British Ceramic Transactions, (2001).
4 Noheda, B., Gonzalo, J.A., Cross, L.E., Guo, R., Park, S.-E., Cox, D.E., Shirane, G.: Tetragonal-to-monoclinic phase transition in a ferroelectric Perovskite: the structure of PbZr0.52Ti0.48O3, Phys. Rev. B, 61, 8687 – 8695, (2000).
5 Frantti, J., Ivanov, S., Eriksson, S., Rundlöf, H., Lantto, V., Lappalainen, J., Kakihana, M.: Phase transitions of Pb(ZrxTi1-x)O3 ceramics, Phys. Rev. B, 66, 064108, (2002).
6 Woodward, D.I., Knudsen, J., Reaney, I.M.: Review of crystal and domain structures in the PbZrxTi1-xO3 solid solution, Phys. Rev. B, 72, 104110, (2005).
7 Helke, G., Lubitz, K.: Piezoelectric pzt ceramics. In Piezoelectricity: Evolution and future of a technology edited by W. Heywang, K. Lubitz and W. Wersing, Berlin, 89 – 131, (2009).
8 Cao, H., Evans, A.G.: Non-linear deformation of ferroelectric ceramics, J. Am. Ceram. Soc., 76, 890 – 896, (1993).
9 Supancic, P., Wang, Z., Harrer, W., Reichmann, K., Danzer, D.: Strength and fractography of piezoceramic multilayer stacks, Key Engng. Mat., 290, 46 – 53, (2005).
10 Furata, A., Uchino, K.: Dynamic observation of crack propagation in piezoelectric multilayer actuators, J. Am. Ceram. Soc., 76, 1615 – 1617, (1993).
11 Lynch, C.: Fracture of ferroelectric and relaxor ceramics: influence of electric field, Acta Mater., 46, 599 – 608, (1998).
12 Kuna, M.: Fracture mechanics of piezoelectric materials – where are we right Now?, Eng. Fract. Mech., 77, 309 – 326, (2010).
13 Wang, H., Wereszczak, A.A.: Effects of electric field on the biaxial strength of poled PZT. In: Advances in electronic ceramics: Ceramic engineering and science proceedings, 28, (8), John Wiley & Sons, Inc., 57 – 68 (2009).
14 Calderon-Moreno, J.M., Guiu, F., Meredith, M., Reece, M.J.: Fracture toughness anisotropy of PZT, Mat. Sci. & Eng., A234 – 236, 1062 – 1066, (1997).
15 Schneider, G.A., Heyer, V.: Influence of the electric field on vickers indentation crack growth in BaTiO3, J. Eur. Ceram. Soc., 19, 1299 – 1306, (1998).
16 Schneider, G.A., Heyer, V.: Influence of the electric field on vickers indentation crack growth in BaTiO3, J. Eur. Ceram. Soc., 19, 1299 – 1306, (1999).
17 Kolleck, A., Schneider, G.A., Meschke, F.: R-curve behaviour of BaTiO3 and PZT ceramics under the influence of an electric field applied parallel to the crack front, Acta Mater., 48, 4099 – 4113, (2000).
18 Meschke, F., Raddatz, O., Kolleck, A., Schneider, G.A.: R-curve behavior and crack-closure stresses in barium titanate and (Mg,Y)-PSZ ceramics, J. Am. Ceram. Soc., 83, 353 – 361, (2000).
19 Lucato, S., Lupascu, D., Rödel, J.: Effect of poling direction on R-curve behavior in lead zirconate titanate, J. Am. Ceram. Soc., 83, 424 – 426, (2000).
20 Fett, T., Munz, D., Thun, G.: Bending strength of a PZT ceramic under electric fields, J. Eur. Ceram. Soc., 23, 195 – 202, (2003).
21 Lupascu, D.C., Aulbach, E., Rodel, J.: Mixed electromechanical fatigue in lead zirconate titanate, J. Appl. Phys., 93, 5551 – 5556, (2003).
22 Lupascu, D.C., Genenko, Y.A., Balke, N.: Aging in ferroelectrics, J. Am. Ceram. Soc., 89, 224 – 229, (2006).
23 Griffith, A.A.: The phenomenon of rupture and flow in solids, Phil. Trans. Roy. Soc. London, A221, 163 – 198, (1920).
24 Murakami, Y.: The stress intensity factor handbook. New York: Pergamon press. (1986).
25 Tada, H., Paris, P., Irwin, G.R.: The stress analysis handbook. St. Louis: Del research corporation, (1985).
26 Newman, J.C., Raju, I.S.: An empirical stress-intensity factor equation for the surface crack, Eng. Fract. Mech., 15, 185 – 192, (1981).
27 Morrell, R.: Fractography of brittle materials, vol. 15. Teddington: National physical laboratory, (1999).
28 Jayatilaka, A., Trustrum, K.: Statistical approach to brittle fracture, J. Mater. Sci., 12, 1426 – 1430, (1977).
29 Danzer, R., Lube, T., Supancic, P., Damani, R.: Fracture of advanced ceramics, Adv. Eng. Mat., 10, 275 – 298, (2008).
30 Weibull, W.: A statistical theory of the strength of materials, pp. 45 Vol. 151. Stockholm: Generalstabens litografiska anstalts förlag. (1939).
31 Weibull, W.: A statistical distribution function of wide applicability, J. Appl. Mech., 18, 293 – 298, (1951).
32 Danzer, R.: A general strength distribution function for brittle materials, J. Eur. Ceram. Soc., 10, 461 – 472, (1992).
33 Bermejo, R., Sestakova, L., Grünbichler, H., Lube, T., Supancic, P., Danzer, R.: Fracture mechanisms of structural and functional multilayer ceramic structures, Key Eng. Mat., 465, 41 – 46, (2011).
34 Oates, W.S., Lynch, C.S., Lupascu, D.C., Kounga Njiwa, A.B., Aulbach, E., Rödel, J.: Subcritical crack growth in lead zirconate titanate, J. Am. Ceram. Soc., 87, 1362 – 1364, (2004).
35 EN 843 – 1, Advanced Technical Ceramics, Monolithic Ceramics, Mechanical Properties at Room Temperature, Part 1: Determination of flexural strength. EN, (1995).
36 ISO 23146, Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics) – Test Methods for Fracture Toughness of Monolithic Ceramics – Single-Edge V-Notch Beam (SEVNB) Method. ISO, Switzerland, (2008).
37 Anstis, G.R., Chantikul, P., Lawn, B.R.: A critical evaluation of indentation techniques for measuring fracture Toughness: I, direct crack measurements, J. Am. Ceram. Soc., 64, 533 – 538, (1981).
38 Bermejo, R., Gruenbichler, H., Kreith, J., Auer, C.: Fracture resistance of a doped PZT ceramic for multilayer piezoelectric actuators: Effect of mechanical load and temperature, J. Eur. Ceram. Soc., 30, 705 – 712, (2010).
39 Fett, T., Munz, D., Thun, G.: Nonsymmetric deformation behavior of lead zirconate titanate determined in bending tests, J. Am. Ceram. Soc., 81, 269 – 272, (1998).
40 Bermejo, R., Deluca, M.: Layered ceramics. In: Handbook of Advanced Ceramics, 2nd edition. Edited by S. Somiya and M. Kaneno, Tokyo, (2012).
41 Bermejo, R., Danzer, R.: Failure resistance optimisation in layered ceramics designed with strong interfaces, J. Ceram. Sci. Tech., 01, 15 – 20, (2010).
42 Bermejo, R., Torres, Y., Baudin, C., Sánchez-Herencia, A.J., Pascual, J., Anglada, M., Llanes, L.: Threshold strength evaluation on an Al2O3-ZrO2 multilayered system, J. Eur. Ceram. Soc., 27, 1443 – 1448, (2007).
43 Mizoguchi, K., Nakashima, S.-I.: Determination of crystallographic orientations in silicon films by raman-microprobe polarization measurements, J. Appl. Phys., 65, 2583 – 2590, (1989).
44 Deluca, M., Higashino, M., Pezzotti, G.: Raman tensor elements for tetragonal BaTiO and their use for in-plane domain texture assessments, Appl. Phys. Lett., 91, 091906, (2007).
45 Deluca, M., Sakashita, T., Galassi, C., Pezzotti, G.: Investigation of local orientation and stress analysis of PZT-based materials using micro-probe polarized raman spectroscopy, J. Eur. Ceram. Soc., 26, 2337 – 2344, (2006).
46 Deluca, M., Bermejo, R., Gruenbichler, H., Presser, V., , R., Nickel, K. G.: Raman spectroscopy for the investigation of indentation-induced domain texturing in lead zirconate titanate piezoceramics, Scripta Mater., 63, 343 – 346, (2010).
Copyright
Göller Verlag GmbH