• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Surface Strengthening of Extrusion-Formed Polymer/Filler-Derived Ceramic Composites

L. Schlier1, N. Travitzky1, J. Gegner2, P. Greil1

1 Department of Materials Science, (Glass and Ceramics), University of Erlangen-Nuernberg, Martensstr. 5, 91058 Erlangen, Germany
2 Department of Material Physics, SKF GmbH, Gunnar-Wester-Str. 12, 97421 Schweinfurt, Germany

received June 4, 2012, , accepted July 25, 2012

Vol. 3, No. 4, Pages 181-188   DOI: 10.4416/JCST2012-00018

Abstract

Surface nitridation of extrusion-formed Fe-Si-Cr-filler-loaded polysiloxane polymer filaments was investigated. After the filaments were exposed to a nitrogen atmosphere at temperatures above 1000 °C, a gas-solid reaction caused the formation of a nitridation reaction layer covering the filament surface. Thermo-chemical calculations of equilibrium phase compositions at different nitrogen activity suggest the formation of Si2N2O and Si3N4 near the filament surface (high nitrogen content) whereas SiC and unreacted CrSi2 and FeSi dominate in the core region (low nitrogen content), which was confirmed by means of XRD analyses. Compared to filaments annealed in an inert Ar atmosphere (no nitride reaction layer), specimens covered with a nitride surface layer of only 20 μm in thickness obtained a bending strength increment of + 35 % (mean fracture stress 400 MPa). The improved mechanical properties were attributed to a pronounced volume increase triggered by the nitride reaction, which gives rise to pore filling and crack healing. Since post-fabrication treatment in a reactive atmosphere is independent of the component shape and size, formation of a surface reaction zone with densified microstructure (reduced porosity and flaws) may offer a versatile route for improving the properties of bulk polymer-filler-derived ceramic components.

Download Full Article (PDF)

Keywords

Polymer derived ceramics, surface strengthening, reaction surface zone

References

1 Colombo, P., Mera, G., Riedel, R., Sorarù, G.D.: Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics, J. Am. Ceram. Soc., 93, 1805 – 1837, (2010).

2 Riedel, R., Kienzle, A., Dressler, W., Ruwisch, L., Bill, J., Aldinger, F.: A silicoboron carbonitride ceramic stable to 2 000 °C, Nature, 382, 796 – 798, (1996).

3 Shah, S.R., Raj, R.: Mechanical properties of a fully dense polymer derived ceramic made by a novel pressure casting process, Acta Mater., 50, 4093 – 4103, (2002).

4 Kumar, R., Prinz, S., Cai, Y., Zimmermann, A., Aldinger, F., Berger, F., Müller, K.: Crystallization and creep behaviour of Si-B-C-N ceramics, Acta Mater., 53, 4567 – 4578, (2005).

5 Saha, A., Williamson, D.L., Raj, R.: A model for nano domains in polymer-derived SiCO, J. Am. Ceram. Soc., 89, 2188 – 2195, (2006).

6 Ishikawa, T., Kohtoku, Y., Kumagawa, K., Yamamura, T., Nasagawa, T.: High-strength alkali-resistant sintered SiC fibre stable up to 2 200 °C, Nature, 391, 773 – 775, (1998).

7 Bunsell, A.R., Piant, A.: A review of the development of three generations of small diameter silicon carbide fibres, J. Mater. Sci., 41, 823 – 839, (2006).

8 Torrey, J.D., Bordia, R.K.: Mechanical properties of polymer-derived ceramic composite coatings on steel, J. Europ. Ceram. Soc., 28, 253 – 257, (2008).

9 Lewinsohn, C.A., Elangovan, S.: Development of amorphous, non-oxide seals for solid oxide fuel cells, Ceram. Eng. Sci. Proc., 24, 317 – 322, (2003).

10 Colombo, P.: Engineering porosity in polymer-derived ceramics, J. Eur. Ceram. Soc., 28, 1389 – 1395, (2008).

11 Nagaiah, N.R., Kapat, J.S., An, L., Chow, L.: Novel polymer derived ceramic-high temperature heat flux sensor for gas turbine environment, J. Phys.: Conf. Ser., 34, 458 – 463, (2006).

12 Liew, L., Zhang, W., Bright, V.M., An, L., Dunn, M.L., Raj, R.: Fabrication of SiCN ceramic MEMS using injectable polymer-precursor technique, Sensors and Actuators: A. Physical, 89, 64 – 70, (2001).

13 Greil, P.: Net shape manufacturing of polymer derived ceramics, J. Europ. Ceram. Soc., 18, 1905 – 1914, (1998).

14 Greil, P.: Active filler controlled pyrolysis of preceramic polymers (AFCOP), J. Am. Ceram. Soc., 78, 835 – 48, (1995).

15 Sanchez-Jimenez, P.E., Downs, J.A., Raj, R.: Transient viscous flow during the evolution of a ceramic (silicon carbonitride) from a polymer (polysilazane), J. Am. Ceram. Soc., 93, 2567 – 2570, (2010).

16 Li, Y.L., Fan. H., Su, D., Fasel, C., Riedel, R.: Synthesis, structure, and properties of bulk Si(O)C ceramics from polycarbosilazane, J. Am. Ceram. Soc., 92, 2175 – 2181, (2009).

17 Esfehanian, M., Oberacker, R., Fett, T., Hoffmann, M.J.: Development of dense filler-free polymer-derived SiOC ceramics by field-assisted sintering, J. Am. Ceram. Soc., 91, 3803 – 3805, (2008).

18 Ishihara, S., Gu, H., Bill, J., Aldinger, F., Wakai, F.: Densification of precursor-derived Si-C-N ceramics by high-pressure hot isostatic pressing, J. Am. Ceram. Soc., 85, 1706 – 1712, (2002).

19 Scheffler, M., Gambaryan-Roisman, T., Takahashi, T., Kaschta, J., Muenstedt, H., Buhler, P., Greil, P.: Pyrolytic decomposition of organo polysiloxanes, Ceram. Trans., 115, 239 – 250, (2000).

20 Belot, V., Corriu, R.J.P., Leclerq, D., Mutin, P.H.,Vioux, A.: Silicon oxycarbide glasses with low O/Si ratio from organosilicon precursors, J. Non-Crystall. Sol., 176, 33 – 44, (1994).

21 Hurwitz, F.I., Heimann, P., Farmer, S.C., Hembree, D.M.: Characterization of the pyrolytic conversion of polysilsesquioxanes to silicon oxycarbides, J. Mat. Sci., 28, 6622 – 6630, (1993).

22 Erny, T.: Formation and properties of polymer derived composite ceramics of the system MeSi2/polysiloxane, PhD Thesis, Univ. Erlangen-Nuernberg, Germany (1996).

23 Schiavon, M.A., Yoshida, I.V.P.: Ceramic matrix composites derived from CrSi2-filled silicone polycyclic network, J. Mat. Sci., 39, 4507 – 4514, (2004).

24 Yoshikawa, N., Evans, J.W.: Modeling of chemical vapor infiltration rate considering a pore size distribution, J. Am. Ceram. Soc., 85, 1485 – 1491, (2002).

25 Levenspiel, O.: Chemical reaction engineering, 2nd Ed.; pp. 469 – 74. Wiley, New York, (1972).

26 Crank, J.: The Mathematics of diffusion, Oxford Univ. Press, UK, (2004).

27 Petzow, G., Herrmann, M.: Silicon nitride ceramics, in Jansen "Structure and Bonding" Vol. 102, Springer Verl. Berlin, 47 – 168, (2002).

28 Lin, S.: Comparative studies of metal additives on the nitridation of high purity silicon, J. Am. Ceram. Soc., 60, 78 – 81, (1977).

29 Moulson, A.J.: Review: RBSN – its properties and formation, J. Mat. Sci., 14, 1017 – 1051, (1979).

30 Bond, G.C.: Heterogeneous catalysis: Principles and applications, Oxford University Press, (1974).

31 Cofer, C.G., Lewis, J.A.: Chromium catalysed silicon nitridation, J. Mat. Sci., 29, 5880 – 5886, (1994).

32 Pigeon, A., Varma, A., Miller, A.: Some factors influencing the formation of reaction-bonded silicon nitride, J. Mat. Sci., 28, 1919 – 1936, (1993).

33 Durham, S.J.P., Shanker, K., Drew, R.A.L.K.: Carbothermal synthesis of silicon Nitride: effect of reaction conditions, J. Am. Ceram. Soc., 74, 31 – 37, (1991).

34 Xiao, Z.G., Mantei, T.D.: Plasma-enhanced deposition of hard silicon nitride-like coatings from hexamethyldisiloxane and ammonia, Surf. Coat. Tech., 172, 184 – 188, (2003).

35 Larker, R.: Reaction sintering and properties of silicon oxynitride densified by hot isostatic pressing, J. Am. Ceram. Soc., 75, 62 – 66, (1992).

36 Riley, F.L.: Silicon nitride and related materials, J. Am. Ceram. Soc., 83, 245 – 265, (2000).

37 Harrer, W., Danzer, R., Morell, R.: Influence of surface defects on the biaxial strength of a silicon nitride ceramic – increase of strength by crack healing, J. Eur. Ceram. Soc., 32, 27 – 35 (2012).

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2025 Göller Verlag GmbH