Articles
All articles | Recent articles
Influence of Polyvinyl Alcohol/Zirconium Polycation Interactions on the Properties of Aqueous Alumina Suspensions
C. Rödel1, F. Wehner2, A. Meyer1, T. Meissner1, A. Potthoff1, A. Michaelis2
1 Fraunhofer IKTS Dresden, Winterbergstrasse 28, 01277 Dresden, Germany
2 Institute of Material Science, Dresden University of Technology, 01062 Dresden, Germany
received May 08, 2012, received in revised form July 18, 2012, accepted August 3, 2012
Vol. 3, No. 3, Pages 141-150 DOI: 10.4416/JCST2012-00016
Abstract
This paper presents and describes the interactions occurring in polyvinyl-alcohol-containing alumina suspensions containing different multivalent cations. The influence of Mg (+II), Ca (+II), Al (+III) and Zr (+IV) cations was studied systematically by means of surface potential, viscosity, sedimentation and adsorption measurement techniques. The results were compared with the results obtained for a monovalent reference (K (+I)). Whereas for Mg (+II), Ca (+II) and Al (+III) the interactions can be explained by compression of the electric double layer or formation of hydroxides, Zr (+IV) shows a unique affinity for polyvinyl alcohol. This interaction yields a significant improvement in suspension flowability and sedimentation stability. Moreover this specific interaction is independent of the solid surface. Thus the stabilizing effect of polyvinyl alcohol/Zr (+IV) can be combined with the effect of a polyacrylate dispersant.
Download Full Article (PDF)
Keywords
Processing, suspension, alumina, polyvinyl alcohol, zirconium cations
References
1 Aldinger, F., Kalz, H. J.: The importance of chemistry in the development of high-performance ceramics, Angew. Chem. Int. Ed. Engl., 26, 371 – 381, (1987).
2 Cesarano III, J., Aksay, I.., Bleier A.: Stability of aqueous α-Al2O3 suspensions with Poly(methacrylic Acid) polyelectrolyte, J. Am. Ceram. Soc., 71, 250 – 255, (1988).
3 Cesarano III, J., Aksay, I. A.: Processing of highly concentrated aqueous α-alumina suspensions stabilized with polyelectrolytes, J. Am. Ceram. Soc., 71, 1062 – 1067, (1988).
4 Hidber, P.C., Graule, T.J., Gauckler, L.J.: Citric acid – A dispersant for aqueous alumina suspensions, J. Am. Ceram. Soc., 79, 1857 – 1867, (1996).
5 Hidber, P.C., Graule, T.J., Gauckler, L.J.: Influence of the dispersant structure on properties of electrostatically stabilized aqueous alumina suspensions, J. Eur. Ceram. Soc., 17, 239 – 249, (1997).
6 Briscoe, B.J., Khan, A.U., Luckham, P.F.: Optimising the dispersion on an alumina suspension using commercial polyvalent electrolyte dispersant, J. Eur. Ceram. Soc., 18, 2141 – 2147, (1998).
7 Davies, J., Binner, J.G.P.: The role of ammonium polyacrylate in dispersing concentrated alumina suspensions, J. Eur. Ceram. Soc., 20, 1539 – 1553, (2000).
8 Liu, Y. Q., Gao, L., Guo, J.: Comparative study on the stabilizing effect of 2-phosphonobutane-1,2,4-tricarboxylic acid and citric acid for alumina suspensions, Colloids Surf. A Physicochem. Eng. Aspects., 193, 187 – 195, (2001).
9 Jiang, L.Q., Gao, L., Liu, Y. Q.: Adsorption of salicylic acid, 5-sulfosalicylic acid and tiron at the alumina-water interface, Colloids Surf. A Physicochem. Eng. Aspects., 211, 165 – 172, (2002).
10 Studart, A.R., Pandolfelli, V.C., Tervoort, E., Gauckler, L.J.: Selection of dispersants for high-alumina zero-cement refractory castables, J. Eur. Ceram. Soc., 23, 997 – 1004, (2003).
11 Yoon, T.H., Johnson, S.B., Musgrave, C.B., Brown, G.E.: Adsorption of organic matter at mineral/water interfaces: I. ATR-FTIR spectroscopic and quantum chemical study of oxalate adsorbed at Boehmit/Water and Corundum/Water interfaces, Geochim. Cosmochim. Acta, 68, 4505 – 4518, (2004).
12 Hidber, P.C., Graule, T.J., Gauckler, L.J.: Competitive adsorption of citric acid and poly(vinyl alcohol) onto alumina and its influence on the binder migration during drying, J. Am. Ceram. Soc., 78, 1775 – 1780, (1995).
13 Santhiya, D., Subramanian, S., Natarajan, K.A., Mlghan, S.G.: Surface chemical studies on the competitive adsorption of poly(acrylic acid) and poly(vinyl alcohol) onto alumina, J. Colloid Interface Sci., 216, 143 – 153, (1999).
14 Saranavan, L., Subramanian, S.: Surface chemical studies on the competitive adsorption of poly(ethylene glycol) and ammonium poly(methacrylate) onto alumina, J. Colloid Interface Sci., 284, 363 – 377, (2005).
15 Paik, U.: Competitive adsorption of dispersant and binder on alumina and its effect on the electrokinetic behaviour in aqueous media, Kor. J. Ceram., 4, 292 – 296, (1998).
16 Dupon, L., Folssy, A., Mercier, R., Mottet, B.: Effect of calcium ions on the adsorption of polyacrylic acid onto alumina, J. Colloid Interface Sci., 161, 455 – 464, (1993).
17 Ringenbach, E., Chauveteau, G., Pefferkorn, E.: Effect of soluble aluminium Ions on polyelectrolyte-alumina interactions. Kinetics of polymer adsorption and colloid stabilisation, Colloids Surf. A Physicochem. Eng. Aspects., 99, 161 – 173, (1995).
18 Johnson, S.B., Scales, P.J., Healy, T.W.: The binding of monovalent electrolyte ions on alpha-alumina. I. electroacoustic studies at high electrolyte concentrations, Langmuir, 15, 2836 – 2843, (1999).
19 Johnson, S.B., Franks, G.V., Scales, P.J., Healy, T.W.: The binding of monovalent electrolyte ions on alpha-alumina. II. the shear yield stress of concentrated suspensions, Langmuir, 15, 2844 – 2853, (1999).
20 Vermöhlen, K., Lewandowski, H., Narres, H.D., Schwuger, M.J.: Adsorption of polyelectrolytes on oxides - the influence of ionic strength, molar mass, and Ca2+ Ions, Colloids Surf. A Physicochem. Eng. Aspects., 163, 45 – 53, (2000).
21 Sun, J., Bergström, L., Gao, L.: Effect of magnesium ions on the adsorption of poly(acrylic acid) onto alumina, J. Am. Ceram. Soc., 84, 2710 – 2712, (2001).
22 Chibowski, S., Mazur, E. O., Patkowski, J.: Influence of the ionic strength on the adsorption properties of the system dispersed aluminium oxide-polyacrylic acid, Mater. Chem. Phys., 93, 262 -– 271, (2005).
23 Kelso, J.F., Ferrazzoli, T.A.: Effect of powder surface chemistry on the stability of concentrated aqueous dispersions of alumina, J. Am. Ceram. Soc., 72, 625 – 627, (1989).
24 Mikkola, P., Ylhä, P., Levänen, E., Rosenholm, J.B.: Effect of impurities on dispersion properties of alpha-alumina powder, Ceram. Int., 30, 291 – 299, (2004).
25 Kiennemann, J., Pagnoux, C., Chartier, T., Baumard, J.F., Lamérant, J.M.: Influence of impurities on dispersion properties of bayer alumina, J. Am. Ceram. Soc., 87, 2175 – 2182, (2004).
26 Tari, G., Ferreira, J.M.F., Lyckfeldt, O.: Influence of magnesia on colloidal processing of alumina, J. Eur. Ceram. Soc., 17, 1341 – 1350, (1997).
27 Ohtsuka, H., Mizutani, H., IIO, S., Asai, K., Kiguchi, T., Satone, H., et al.: Effects of sintering additives on dispersion properties of Al2O3 slurry containing polyacrylic acid dispersant, J. Eur. Ceram. Soc., 31, 517 – 522, (2011).
28 Stumm, W.: Reactivity at the mineral-water Interface: dissolution and inhibition, Colloids Surf. A Physicochem. Eng. Aspects., 120, 143 – 166, (1997).
29 Adair, J.H., Krarup, H.G.: The role of solution chemistry in understanding colloidal stability of ceramic suspensions. In: Advances in process measurements for the ceramic industry. The American Ceramic Society, Ohio, USA, (1999).
30 Zum Gahr, K.H.: Microstructure and wear of materials. Elsevier, Amsterdam, (1987).
31 Rainforth, W.M.: The wear behaviour of oxide ceramics – a review, J. Mater. Sci., 39, 6705 – 6721, (2004).
32 Derjaguin, B.V., Landau, L.: Acta physicochim. USSR, 14, 633, (1941).
33 Verwey, E.J.W., Overbeek, J.T.K.: Theory of the stability of lyophobic colloids. Elsevier, Amsterdam, (1948).
34 Lagaly, G., Schulz, O., Zimehl, R.: Dispersions and emulsions. (in German) Steinkopff-Verlag, Darmstadt, (1997).
35 Kirby, G.H., Harris, D.J., Li, Q., Lewis, J.: Poly(acrylic acid)-poly(ethylene oxide) comb polymer effects on BaTiO3 nanoparticle suspension stability, J. Am. Ceram. Soc., 87, 181 – 186, (2004).
36 Olvera de la Cruz, M., Belloni, L., Delsanti, M., Dalbiez, J.P., Spalla, O., Drifford, M.: Precipitation of highly charged polyelectrolyte solutions in the presence of multivalent salts, J. Chem. Phys., 103, 5781 – 5791, (2004).
37 Hunter, R.J.: Measuring zeta potential in concentrated industrial slurries, Colloids Surf. A Physicochem. Eng. Aspects, 195, 205 – 214, (2001).
38 Sarraf, H., Herbig, R.: Electrokinetic sonic amplitude measurement of concentrated alumina suspensions: effect of electrosteric stabilization, J. Ceram. Soc. Japan, 116, 928 – 934, (2008).
39 Dukhin, A.S., Goetz, P.J.: Acoustic and electroacoustic spectroscopy for characterizing concentrated dispersions and emulsions, Adv. Colloid Interface Sci., 92, 73 – 132, (2001).
40 Lerche, D.: Dispersion stability and particle characterization by sedimentation kinetics in a centrifugal field, J. Dispersion Sci. Technol., 23, 699 – 709, (2002).
41 Lerche, D., Sobisch, T.: Consolidation of concentrated dispersions of Nano- and microparticles determined by analytical centrifugation, Powder Technol., 174, 46 – 49, (2007).
42 Nirschl, H.: Effects of physical chemistry on the separation of nano-scale particles on liquids, (in German), Chemie Ingenieur Technik, 79, 1797 – 1807, (2007).
43 Bickert, G., Stahl, W.: Settling behavior characterization of submicron particles in dilute and concentrated suspension, Part. Part. Syst. Charact., 14, 142 – 147, (1997).
44 Majumder, A.K.: Settling velocities of particulate systems – A critical review of some useful models, Miner. Metall. Process., 24, 237 – 242, (2007).
45 Stokes, G.G.: On the effect of the internal friction of fluids on the motion of pendulums, Trans. Cambridge Phil. Soc., 9, (1850).
46 Rödel, C., Müller, M., Glorius, M., Potthoff, A., Michaelis, A.: Effect of varied powder processing routes on the stabilizing performance and coordination type of polyacrylate in alumina suspensions, J. Eur. Ceram. Soc., 32, 363 – 370, (2012).
47 Wiberg, N.: Holleman-Wiberg inorganic chemistry. Academic Press, San Diego, (2001).
48 Feitknecht, W., Schindler, P.: Solubility constants of metal oxides, metal hydroxides, and metal hydroxide salts in aqueous solution, Pure Appl. Chem., 6, 130 – 199, (1963).
49 Solovkin, A.S., Tsvetkova, S.V.: The chemistry of aqueous solutions of zirconium salts (does the zirconyl ion exist?), Russ. Chem. Rev., 31, 655 – 669, (1962).
50 Tytko, K.H.: Isopolyoxo-cations - metal-cations in aqueous-solution (in German), Chem. unserer Zeit, 13, 184 – 194, (1979).
51 Clark, R.J.H., Bradley, D.C., Thornton, P.: The chemistry of titanium, zirconium and hafnium. Pergamon Press, New York, (1973).
52 Jolivet, J.P.: Metal oxide chemistry and synthesis. John Wiley & Sons, Chichester, (2000).
53 Santhiya, D., Subramanian, S., Natarajan, K. A., Mlghan, S. G.: Adsorption and electrokinetic studies on alumina suspensions using Poly(vinyl Alcohol), Minerals Metall. Process., 16, 51 – 55, (1999).
54 Chibowski, S., Paszkiewicz, M., Krupa, M.: Investigation of the influence of the polyvinyl alcohol adsorption on the electrical properties of Al2O3-solution interface, thickness of the adsorption layers of PVA, Powder Technol., 107, 251 – 255, (2000).
55 Intorre, B.J., Martell, A.E.: Zirconium complexes in aqueous Solution. I. reaction with multidentate ligands, J. Am. Chem. Soc., 82, 358 – 364, (1960).
Copyright
© 2012 Göller Verlag GmbH