Articles
All articles | Recent articles
Processing of Nanostructured Zirconia Composite Ceramics with High Aging Resistance
M. Johannes, J. Schneider
Fraunhofer Institute for Ceramic Technologies and Systems, Department of Oxide- and Polymer-Ceramic Components, Michael-Faraday-Strasse 1, 07629 Hermsdorf/Germany
received April 17, 2012, received in revised form June 11, 2012, accepted July 25, 2012
Vol. 3, No. 3, Pages 151-158 DOI: 10.4416/JCST2012-00015
Abstract
Dense-sintered ceramic bodies of 3Y-TZP and ATZ (90 % ZrO2-10 %Al2O3) composite ceramic were prepared from commercial powders by means of slip casting, sintering and hot isostatic pressing. The powders were processed in an optimized milling procedure. The properties of the milled particles were determined with diffusive light scattering, Rietveld refinement, BET and SEM. The enhanced sintering activity allows a decrease in the sintering temperature by more than 100 K. After hot isostatic pressing, samples with a grain size of ≈ 150 nm were obtained. These nanostructured ceramics are not affected by low-temperature degradation in hydrothermal atmosphere at 134 °C. No significant difference in fracture toughness between coarse-grained Y-TZP and nanostructured ceramics was observed. The bending strength of nanostructured Y-TZP is slightly reduced compared with coarse-grained Y-TZP. The prepared ATZ ceramic exhibits a bending strength of about 1700 MPa and a Weibull parameter of 14.
Download Full Article (PDF)
Keywords
Keywords: Zirconia, Y-TZP, ATZ, ceramic composite, nanostructured ceramics, low-temperature degradation, stirred media mill
References
1 Willmann, G., Früh, H.J., Pfaff, H.G.: Wear characteristics of sliding pairs of zirconia (Y-TZP) for hip endoprostheses, Biomaterials, 17, 2157 – 2162, (1996).
2 Piconi, C., Burger, W., Richter, H.G., Cittadini, A., Maccauro, G., Covacci, V., Bruzzese, N., Ricci, G.A., Marmo, E.: ceramics for artificial joint replacements, Biomaterials, 19, 1489 – 1494, (1998).
3 Piconi, C., Maccauro, G.: Zirconia as a ceramic biomaterial, Biomaterials, 20, 1 – 25, (1999).
4 Cales, B.: Zirconia as a sliding Material: Histologic, laboratory, and clinical data, Clin. Orthop. Rel. R., 379, 94 – 112 (2000).
5 Sida, D., Blaise, L., Sida, V., Vavrik, P.: Zirconia ceramic femoral components, Key Eng. Mat., 218 – 220, 581 – 584, (2001).
6 Chevalier, J., Gremillard, L., Virkar, A.V., Clarke, D.R.: The tetragonal-monoclinic transformation in Zirconia: Lessons learned and future trends, J. Am. Ceram. Soc., 92, 1901 – 1920, (2009).
7 Kosmac, T., Dakskobler, A.: Tetragonal zirconia (Y-TZP) ceramics for dental applications: Criteria for materials selection, in: Global Roadmap for Ceramics, International Congress on Ceramics, ICC 2, 1 – 10, (2008).
8 Claussen, N., Ruehle, M., Heuer Arthur, H. (eds.): Phase transformations in ZrO2- containing Ceramics: II the martensitic reaction in t-ZrO2, Science and Technology of Zirconia II, 12, American Ceramic Soc Inc, Stuttgart, (1984).
9 Lange, F.F.: Transformation toughening – part 1 size effects associated with the thermodynamics of constrained transformations, J. Mater. Sci., 17, 225 – 234, (1982).
10 Lange, F.F.: Transformation toughening – part 3 experimental observations in the ZrO2-Y2O3 system, J. Mater. Sci., 17, 240 – 246, (1982).
11 Chevalier, J., Gremillard, L.: Ceramics for medical applications: A picture for the next 20 years, J. Eur. Ceram. Soc., 29, 1245 – 1255, (2009).
12 Sato, T., Shimada, M.: Transformation of yttria-doped tetragonal ZrO2 polycrystals by annealing in water, J. Am. Ceram. Soc., 68, 356 – 356, (1985).
13 Lange, F.F., Dunlop, G.L., Davis, B.I.: Degradation during aging of transformation toughened ZrO2-Y2O3 materials at 250 °C, J. Am. Ceram. Soc., 69, 237 – 240, (1986).
14 Yoshimura, M., Noma, T., Kawabata, K., Somiya, S.: Role of H2O on the degradation process of Y-TZP, J. Mater. Sci. Let., 6, 465 – 467, (1987).
15 Schubert, H., Frey, F.: Stability of Y-TZP during hydrothermal Treatment: Neutron experiments and stability considerations, J. Eur. Ceram. Soc., 25, 1597 – 1602, (2005).
16 Guo, X.: Property degradation of tetragonal zirconia induced by low-temperature defect reaction with water molecules, Chem. Mater., 16, 3988 – 3994, (2004).
17 Chevalier, J.: What future for zirconia as a biomaterial? Biomaterials, 27, 535 – 543, (2006).
18 Becher, P.F., Swain, M.V.: Grain-Size-dependent transformation behavior in polycrystalline tetragonal zirconia, J. Am. Ceram. Soc., 75, 493 – 502, (1992).
19 Basu, B., Vleugels, J., van der Biest, O.: Transformation behaviour of tetragonal Zirconia: Role of dopant content and distribution, Mat. Sci. Eng. A Struct., 366, 338 – 347, (2004).
20 Matsui, K., Horikoshi, H., Ohmichi, N., Ohgai, M., Yoshida, H., Ikuhara, Y.: Cubic-formation and grain-growth mechanisms in tetragonal zirconia polycrystal, J. Am. Ceram. Soc., 86, 1401 – 1408, (2003).
21 Vasylkiv, O., Sakka, Y., Skorokhod, V.V.: Low-temperature processing and mechanical properties of zirconia and zirconia-alumina nanoceramics, J. Am. Ceram. Soc., 86, 299 – 304, (2003).
22 Trunec, M., Maca, K.: Compaction and pressureless sintering of zirconia nanoparticles, J. Am. Ceram. Soc., 90, 2735 – 2740, (2007).
23 Binner, J., Annapoorani, K., Paul, A., Santacruz, I., Vaidhyanathan, B.: Dense nanostructured zirconia by two stage conventional/hybrid microwave sintering, J. Eur. Ceram. Soc., 28, 973 – 977, (2008).
24 Binner, J., Vaidhyanathan, B., Paul, A., Annaporani, K., Raghupathy, B.: Compositional effects in nanostructured yttria partially stabilized zirconia, Int. J. Appl. Ceram. Tec., 8, 766 – 782, (2011).
25 Zheng, J.: Stirred media mills: Dynamics, performance, and physio-chemical aspects. ProQuest Dissertations and Theses, ISBN: 9780591393316, Columbia University, (1997).
26 Mende, S., Stenger, F., Peukert, W., Schwedes, J.: Production of sub-micron particles by wet comminution in stirred media mills, J. Mater. Sci., 39, 5223 – 5226, (2004).
27 Stenger, F., Mende, S., Schwedes, J., Peukert, W.: The influence of suspension properties on the grinding behavior of alumina particles in the submicron size range in stirred media mills, Powder Technol., 156, 103 – 110, (2005).
28 Houivet, D., Quercioli, R., Itaalit, B., Kassas, A., Kamlo, A.N., Bernard, J., Haussonne, J.-M.: Ultrafine grinding of oxide powders with a controlled viscosity of slurries, Adv. Eng. Mater., 13, 609 – 615, (2011).
29 Suárez, G., Sakka, Y., Suzuki, T.S., Uchikoshi, T., Zhu, X., Aglietti, E.F.: Effect of starting powders on the sintering of nanostructured ZrO2 ceramics by colloidal processing, Sci. Technol. Adv. Mat., 10, 1 – 8, (2009).
30 Suárez, G., Borodianska, H., Sakka, Y., Aglietti, E.F., Vasylkiv, O.: Zirconia nanoceramic via redispersion of highly agglomerated nanopowder and spark plasma sintering, J. Nanosci. Nanotechno., 10, 6634 – 6640, (2010).
31 Kern, F.: 2.75Yb-TZP ceramics with high strength and aging resistance, J. Ceram. Sci. Tech., 2, 147 – 154, (2011).
32 Gadow, R., Kern, F.: Novel zirconia – alumina nanocomposites combining high strength and toughness, Adv. Eng. Mater., 12, 1220 – 1223, (2010).
33 Schneider, J., Begand, S., Kriegel, R., Kaps, C., Glien, W., Oberbach, T.: Low-temperature aging behavior of alumina-toughened zirconia, J. Am. Ceram. Soc., 91, 3613 – 3618, (2008).
34 Niihara, K.: A fracture mechanics analysis of indentation-induced palmqvist crack in ceramics, J. Mater. Sci. Let., 2, 221 – 223, (1983).
35 Anstis, G.R., Chantikul, P., Lawn, B.R., Marshall, D.B.: A critical evaluation of indentation techniques for measuring fracture Toughness: I, direct crack measurements, J. Am. Ceram. Soc., 64, 533 – 538, (1981).
36 Tiller, F.M., Hsyung, N.B.: Theory of filtration of ceramics: II, Slip casting on radial surfaces. J. Am. Ceram. Soc., 74, 210 – 218, (1991).
37 Krell, A., Hutzler, T., Klimke, J.: Transmission physics and consequences for materials selection, manufacturing, and applications, J. Eur. Ceram. Soc., 29, 207 – 221, (2009).
38 Yashima, M., Kakihana, M., Yoshimura, M.: Metastable-stable phase diagrams in the zirconia-containing systems utilized in solid-oxide fuel cell application, Solid State Ionics, 86 – 88, 1131 – 1149, (1996).
39 Krell, A.: Load dependence of hardness in sintered submicrometer Al2O3 and ZrO2, J. Am. Ceram. Soc., 78, 1417 – 1419, (1995).
40 Kern, F.: Sintering conditions, microstructure and properties of alumina 10 vol% zirconia nanocomposites, J. Ceram. Sci. Tech., 3, 1 – 8, (2012).
41 Paul, A., Vaidhyanathan, B., Binner, J.G.P.: Hydrothermal aging behavior of nanocrystalline Y-TZP ceramics, J. Am. Ceram. Soc., 94, (7), 2146 2152, (2011).
42 Quinn, G.D., Bradt, R.C.: On the vickers indentation fracture toughness test, J. Am. Ceram. Soc., 90, 673 – 680, (2007).
43 K°bler, J.: Fracture toughness of ceramics using the SEVNB method. Round Robin VAMAS Report No. 37. Empa-D°bendorf, Switzerland, (1999).
44 Fischer, H., Waindich, A., Telle, R.: Influence of preparation of ceramic SEVNB specimens on fracture toughness testing results, Dent. Mater., 24, 618 – 622, (2008).
45 Krell, A.: Features of notch preparation for fracture toughness measurements in partially stabilized zirconia. J. Am. Ceram. Soc., 77, 600 – 602, (1994).
46 Bravo-Leon, A., Morikawa, Y., Kawahara, M., Mayo, M.J.: Fracture toughness of nanocrystalline tetragonal zirconia with low yttria content, Acta Mater., 50, 4555 – 4562, (2002).
Copyright
© 2012 Göller Verlag GmbH