Articles
All articles | Recent articles
Influence of Microstructure on Crack Tip Toughness of α-Sialon Ceramics
C.T. Bodur1, M. Thiele2, M. Herrmann2
1 Istanbul Technical University, Department of Mechanical Engineering, Gümüssuyu 34437 Istanbul, Turkey
2 Fraunhofer Institute for Ceramics Technologies and Systems, Winterbergstrasse 28, 01277, Dresden, Germany
received November 15, 2011, received in revised form April 3, 2012, accepted April 29, 2012
Vol. 3, No. 3, Pages 105-110 DOI: 10.4416/JCST2012-00010
Abstract
For two different α-Sialon ceramics, one with a stoichiometric composition and the other one with an extra amount of yttria, the fracture toughness (SEVNB) and the crack opening displacements (COD) in the crack tip (CT) region were measured. The fracture toughness values were 3.0 MPa√m for the material without excess Y2O3 and 4.5 MPa√m for the material with a residual grain boundary phase. In contrast, the crack tip toughness of α-Sialon with the stoichiometric composition was 1.35 – 1.68 MPa√m and 0.95 – 1.01 MPa√m for the α-Sialon with an excess amount of yttria. Crack behavior in α-Sialon with an excess amount of yttria is both intergranular and transgranular owing to the formation of large elongated grains, and mainly intergranular in α-Sialon with stoichiometric composition. The different crack behavior and the resulting crack tip toughness are the result of the different chemistry and changed microstructure of the materials.
Download Full Article (PDF)
Keywords
Sialon, microstructure-final, toughness and toughening, mechanical properties, crack tip toughness
References
1 Petzow, G., Herrmann, M.: Silicon nitride ceramics. Structure and bonding, edited by Jansen, M., Vol. 102, Springer-Verlag, Berlin Heidelberg (2002).
2 Bitterlich, B., Bitsch, S., Friederich, K.: SiAlON-based ceramic cutting tools, J. Eur. Ceram. Soc., 28 [5], 989 – 994, (2008).
3 Mandal, H.: New developments in α-SiAlON ceramics, J. Eur. Ceram. Soc., 19, [13 – 14], 2349 – 2357, (1999).
4 Herrmann, M., Höhn, S., Bales, A.: Kinetics of rare earth incorporation and its role in densification and microstructure formation of α-sialon, J. Eur. Ceram. Soc., 32, [7], 1313 – 1319, (2012).
5 Kurama, S., Herrmann, M., Mandal, H.: The effect of processing conditions, amount of additives and composition on the microstructures and mechanical properties of α-SiAlON ceramics, J. Eur. Ceram. Soc., 22, [1], 109 – 119, (2002).
6 Chen, I.W., Rosenflanz, A.: A tough SIAION ceramic based on alpha-si3N4 with a whisker-like microstructure, Nature, 389, 701 – 704, (1997).
7 Zenotchkine, M., Shuba, R., Kim, J.S., Chen, I.W.: R-curve behavior of In Situ toughened kinetics of rare earth incorporation and its role in densification and microstructure formation of α-SiAlON ceramics, J. Am. Ceram. Soc., 84, [4], 884 – 886, (2001).
8 Munz, D., Fett, T.: Ceramics: Mechanical properties, failure behavior, materials selection, Chapter 4, Springer-Verlag, Berlin, Heidelberg (1999).
9 Pezzotti, G., Muraki, N., Maeda, N., Satou, K., Nishida, T.: In Situ measurement of bridging stresses in toughened silicon nitride using raman microprobe spectroscopy, J. Am. Ceram. Soc., 82, [5], 1249 – 1256, (1999).
10 Kruzic, J.J., Cannon, R.M., Ager III, J.W., Ritchie, R.O.: Fatigue threshold R-curves for predicting reliability of ceramics under cyclic loading, Acta Mater., 53, 2595 – 2605, (2005).
11 Fünfschilling, S., Fett, T., Oberacker, R., Hoffmann, M.J., Schneider, G.A., Becher, P.F., Kruzic, J.J.: Crack-tip toughness from vickers crack-tip opening displacements for materials with strongly rising R-curves, J. Am. Ceram. Soc., 94, [6], 1884 – 1892, (2011).
12 Fett, T., Fünfschilling, S., Hoffmann, M.J., Oberacker, R., Jelitto, H., Schneider, G.A.: R-curve determination for the initial stage of crack extension in Si3N4, J. Am. Ceram. Soc., 91, [11], 3638 – 3642, (2008).
13 Kruzic, J.J., Satet, R.L., Hoffmann, M.J., Cannon, R.M., Ritchie, R.O.: The utility of R-curves for understanding fracture toughness-strength relations in bridging ceramics, J. Am. Ceram. Soc., 91, [6], 1986 – 1994, (2008).
14 Fett, T.: Crack-tip toughness from wide-range COD measurements, Int. J. Fracture, 114, L29 – L32, (2002).
15 Seidel, J., Rödel, J.: Measurement of crack tip toughness in alumina as a function of grain size, J. Am. Ceram. Soc., 80, [2], 433 – 438, (1997).
16 Kounga Njiwa, A.B., Yousef, S.G., Fett, T., Rödel, J.: Influence of microcracking on crack-tip toughness of alumina, Eng. Fract. Mech., 72, 1011 – 1019, (2005).
17 Fett, T., Kounga Njiwa, A.B., Rödel, J.: Crack opening displacements of vickers indentation cracks, Eng. Fract. Mech., 72, 647 – 659, (2005).
18 Kounga Njiwa, A.B., Fett, T., Rödel, J, Quinn, G.D.: Crack-tip toughness measurements on a sintered reaction-bonded Si3N4, J. Am. Ceram. Soc., 87, [8], 1502 – 1508, (2004).
19 Fünfschilling, S., Fett, T., Hoffmann, M.J., Oberacker, R., Jelitto, H., Schneider, G.A.: Determination of the crack-tip toughness in silicon nitride ceramics, J. Mater Sci., 44, [1], 335 – 338 (2009).
20 Schneider G.A., Fett, T.: Computation of the stress intensity factor and COD for submicron sized indentation cracks, J. Ceram. Soc. Japan, 114, [11], 1044 – 1048, (2006).
21 Fünfschilling, S., Fett, T., Hoffmann, M.J., Oberacker, R., Schwind, T., Wippler, J., Böhlke, T., Özcoban, H., Schneider, G.A., Becher, P.F., Kruzic, J.J.: Mechanisms of toughening in silicon Nitrides: the roles of crack bridging and microstructure, Acta Mater., 59, 3978 – 3989, (2011).
Copyright
© 2012 Göller Verlag GmbH