Articles
All articles | Recent articles
Gadolinia-Neodymia-Co-Stabilized Zirconia Materials with High Toughness and Strength
F. Kern
Institut für Fertigungstechnologie keramischer Bauteile, Universität Stuttgart, (Institute for Manufacturing Technologies of Ceramic Components and Composites, University of Stuttgart), 70569 Stuttgart, Allmandring 7b, Germany
received January 23, 2012, received in revised form May 24, 2012, accepted June 28, 2012
Vol. 3, No. 3, Pages 119-130 DOI: 10.4416/JCST2012-00004
Abstract
Tetragonal zirconia polycrystals (TZP) ceramics are frequently used in structural applications owing to their attractive mechanical properties. The established standard materials Y-TZP and Ce-TZP suffer from deficiencies in either toughness or strength.
Combining different stabilizer oxides can be a feasible strategy to obtain TZP materials with both high strength and toughness. 1 mol% gadolinium oxide-2 mol% neodymium oxide co-stabilized zirconia powder (GdNd2-TZP) was produced from pyrogenic unstabilized zirconia nanopowder via the nitrate route and blended with 0.5 and 20 vol% alumina respectively. Materials hot-pressed at 1200 – 1350 °C were characterized in respect of mechanical properties, microstructure and phase composition. GdNd2-TZP combines very high fracture resistance with a 4-pt-bending strength > 1000 MPa. The alumina-toughened zirconia (ATZ) composite reaches higher strength at slightly lower toughness. ATZ exhibits higher hardness and less sensitivity to variations in processing conditions. Under optimized sintering, both materials exhibit an extremely high threshold stress intensity K0 of up to 6 – 7.5 MPa·√m. X-ray diffraction results show that the materials tend to decompose with rising sintering temperatures as a result of progressive formation of cubic phase and monoclinic zirconia.
Download Full Article (PDF)
Keywords
Zirconia, mechanical properties, R-curve, phase composition, microstructure
References
1 Kelly, P.M., Rose, L.R.F.: The martensitic transformation in ceramics – its role in transformation toughening, Prog. Mat. Sci., 47, 463 – 557, (2002).
2 Hannink, R.J., Kelly, P.M., Muddle, B.C.: Transformation toughening in zirconia-containing ceramics, J. Am. Ceram. Soc., 83, [3], 461 – 87, (2000).
3 Grathwohl, G., Liu, T.: Crack resistance and fatigue of transforming Ceramics: II, CeO2-stabilized tetragonal ZrO2, J. Am. Ceram. Soc., 74, [12], 3028 – 34, (1991).
4 Grathwohl, G., Liu, T.: Crack resistance and fatigue of transforming Ceramics: I, materials in the ZrO2-Y2O3-Al2O3 system, J. Am. Ceram. Soc., 74, [2], 318 – 25, (1991).
5 Tsukidate, T., Tsukuma, K.: Partially stabilized zirconia powder, Ceram. Jpn., 17, 816 – 822, (1982).
6 Yuan, Z.X., Vleugels, J., Van der Biest, O.: Preparation of Y2O3-coated ZrO2 powder by suspension drying, J. Mat. Sci. Let., 19, 359 – 361, (2000).
7 Ohnishi, H., Naka, H., Sekino, T., Ikuhara, Y., Niihara, K: Mechanical properties of 2.0 – 3.5 mol% Y2O3-stabilized zirconia polycrystals fabricated by the solid phase mixing and sintering method, J. Ceram. Soc. Jap., 116, 1360, 1270 – 1277, (2008).
8 Kern, F: Alumina-doped 2.5Y-TZP produced from yttria-coated pyrogenic nanopowder, J. Ceram. Sci. Tech., 2, [2], 89 – 96, (2011).
9 Picconi, C., Burger, W., Richter, H.G., Cittadini, A., Maccauro, G., Covacci, V., Bruzzese, N., Ricci, G.A., Marmo, E.: Y-TZP ceramics for artificial joint replacements, Biomaterials, 19, 1489 – 1494, (1998).
10 Kan, Y., Li, S., Wang, P., Zhang, G., Van der Biest, O., Vleugels, J.: Preparation and conductivity of Yb2O3-Y2O3 and Gd2O3-Y2O3 co-doped zirconia ceramics, Solid State Ionics, 179, 1531 – 1534, (2004).
11 Huang, S., Li, L., Van der Biest, O., Vleugels, J.: Microwave sintering of CeO2 and Y2O3 co-stabilised ZrO2 from stabiliser-coated nanopowders, J. Eur. Ceram. Soc., 2, 7 689 – 693, (2007).
12 Vleugels, J., Xu, T., Huang, S., Kan, Y., Wang, P., Li, L., Van der Biest, O.: Characterization of (Nd,Y)-TZP ceramics prepared by a colloidal suspension coating technique, J. Eur. Ceram. Soc., 27, 1339 – 43, (2007).
13 Wang, C., Zinkevich, M., Aldinger, F.: Phase diagrams and thermodynamics of rare-earth-doped zirconia ceramics, Pure Appl. Chem., 79, [10], 1731 – 1753, (2007).
14 Andrievskaya, E.R., Lopato, L.M.: Influence of composition on the T- M transformation in the systems ZrO2-Ln2O3 (Ln = la, nd, sm, Eu), J. Mater. Sci., 311, 2591 – 2596, (1995).
15 Rouanet, A.: Contribution to study of zirconium-oxides systems of lanthanides close to the melting point, Rev. Int. Haut. Temp. Refract., 8, [2], 161 – 180, (1971).
16 Hinatsu, Y., Muromura, T.: Phase relations in the systems ZrO2-Y2O3-Nd2O3 and ZrO2-Y2O3-CeO2, Mat. Res. Bull., 21, [11], (2003).
17 Lakiza, S., Fabrichnaya, O., Wang, C., Zinkevich, M., Aldinger, F.: Phase diagram of the ZrO2-Gd2O3-Al2O3 system, J. Eur. Ceram. Soc., 26, 233 – 246, (2006).
18 Salehi, S., Van der Biest, O., Vleugels, J.: Y2O3 and Nd2O3 Co-stabilized ZrO2-WC composites, J. Mater. Sci., 43, 5784 – 5789, (2008).
19 Salehi, S., Yüksel, B., Vanmeensel, K., Van der Biest, O., Vleugels, J.: Y2O3-Nd2O3 double stabilized ZrO2-TiCN nanocomposites, Mater. Chem. Phys., 113, 596 – 601, (2009).
20 Gadow, R., Kern, F.: Novel zirconia-alumina nanocomposites combining high strength and toughness, Adv. Eng. Mat., 12, [12], 1220 – 1223, (2010).
21 Quinn, G., Bradt, R.: On the vickers indentation fracture toughness test, J. Am. Ceram. Soc., 90, [3], 673 – 680, (2007).
22 Krell, A.: Features of notch preparation for fracture toughness measurements in partially stabilized zirconia, J. Am. Ceram. Soc., 77, [2], 600 – 602, (1994).
23 Kern, F., Gadow, R.: Ytterbia (2.25 mol.-%) stabilised zirconia (Yb-TZP) manufactured from coated nanopowder, Adv. Appl. Ceram., DOI: 10.1179/1743676111Y.0000000071, (2012).
24 Anstis, G.R., Chantikul, P., Lawn, B.R., Marshall, D.B.: A critical evaluation of indentation techniques for measuring fracture Toughness: I, direct crack measurements, J. Am. Ceram. Soc., 64, [9], 533 – 538, (1981).
25 Chantikul, P., Anstis, G.R., Lawn, B.R., Marshall, D.B.: A critical evaluation of indentation techniques for measuring fracture Toughness: II, strength method, J. Am. Ceram. Soc., 64, [9], 539 – 543, (1981).
26 Dransmann, G., Steinbrech, R., Pajares, A., Guiberteau, F., Dominguez-Rodriguez, A., Heuer, A.: Indentation studies on Y2O3,-stabilized ZrO2: II, toughness determination from stable growth of indentation-induced cracks, J. Am. Ceram. Soc., 77, [5], 1194 – 201, (1994).
27 Benzaid, R., Chevalier, J., Saadaoui, M., Fantozzi, G., Nawa, M., Diaz, L.A., Torrecillas, R.: Fracture toughness, strength and slow crack growth in a ceria stabilized Zirconia-Alumina nanocomposite for medical applications, Biomaterials, 29, 3636 – 3641, (2008).
28 Lube, T., Fett, T: A threshold stress intensity factor at the onset of stable crack extension of knoop indentation cracks, Eng. Fract. Mech., 71, 2263 – 2269, (2004).
29 Toraya, H., Yoshimura, M., Somiya, S.: Calibration curve for quantitative analysis of the monoclinic-tetragonal ZrO2 system by X-ray diffraction, J. Am. Ceram. Soc., 67, [6], C119 – 121, (1984).
30 Liu, Z., Ouyang, Z., Zhou, Y., Li, J.: Effect of alumina addition on the phase evolution and thermal conductivity of ZrO2-NdO1.5 ceramics, J. Alloys Comp., 468, 350 – 355, (2009).
31 Apel, E., Ritzberger, C., Courtois, N., Reveron, H. et al. : Introduction to a tough, strong and stable Ce-TZP/MgAl2O4 composite for biomedical applications, J. Eur. Ceram. Soc., doi:10.1016/j.jeurceramsoc.2012.02.002, (2012).
32 Vleugels, J., Yuan, Z., Van Der Biest, O.: Mechanical properties of Y2O3/Al2O3-coated Y-TZP ceramics, J. Eur. Ceram. Soc., 22, 873 – 881, (2002).
33 Burger, W., Richter, H.G., Piconi, C., Zatteroni, R., Cittadini, A., Boccalari, M.: New Y-TZP powders for medical grade zirconia, J. Mater. Sci., Mater. M., 8, 113 – 118, (1997).
34 McMeeking, R., Evans, A.G.: Mechanics of transformation-toughening in brittle materials, J. Am. Ceram. Soc., 65, [5], 242 – 246, (1982).
35 Chen, I.W., Reyes-Morel, P.E.: Implications of transformation plasticity in ZrO2-containing Ceramics: I, shear and dilatation effects, J. Am. Ceram. Soc., 69, [3], 181 – 189, (1986).
36 Budiansky, B., Hutchinson, J.W., Lambropolous, J.C.: Continuum theory of dilatant transformation toughening in ceramics, Int. J. Solids Struct., 19, [4], 337 – 55, (1983).
37 Kosmac, T., Wagner, R., Claussen, N.: X-ray determination of transformation depths in ceramics containing tetragonal ZrO2, J. Am. Ceram. Soc., 64, [4], C72 – 73, (1981).
38 Swain, M.V., Rose, L.R.F.: Strength limitations in transformation-toughened zirconia alloys, J. Am. Ceram. Soc., 69, [7], 511 – 18, (1986).
39 Amazigo, J., Budiansky, B.: Interaction of particulate and transformation toughening, J. Mech. Phys. Solids, 36, [5], 581 – 595, (1988).
40 Xu, H., Jahanmir, S., Ives, L.: Effect of grinding on strength of tetragonal zirconia and zirconia toughened alumina, Machining Sci. Techn., 1, [1], 49 – 66, (1997).
41 Mori, Y., Kitano, Y., Ishitani, A., Masaki, T.: X-ray determination of transformation zone size in toughened zirconia ceramics, J. Am. Ceram. Soc., 71, [7], C-322-C-324, (1988).
42 Ross, I.M., Rainforth, W.M., Comb, D.W., Scott, A.J., Brydson, R.: The role of trace additions of alumina to yttria-tetragonal zirconia polycrystals (Y-TZP), Scripta Mater., 45, 653 – 660, (2001).
43 Gregori, G., Burger, W., Sergo, V.: Piezo-spectroscopic analysis of the residual stresses in zirconia-toughened alumina Ceramics: the influence of the tetragonal-to-monoclinic transformation, Mater. Sci. Eng., A271, 401 – 406, (1999).
44 Kern, F., Gadow, R.: Alumina toughened zirconia from yttria coated powders, J. Eur. Ceram. Soc., doi:10.1016/j.jeurceramsoc.2012.03.014, (2012).
45 Matsui, K., Horikoshi, H., Ohmichi, N., Ohgai, M., Yoshida, H., Ikuhara, Y.: Cubic-formation and grain-growth mechanisms in tetragonal zirconia polycrystal, J. Am. Ceram. Soc., 86, [8], 1401 – 1408, (2003).
Copyright
© 2012 Göller Verlag GmbH