Articles
All articles | Recent articles
Formation, Decomposition and Thermal Stability of Al2TiO5 Ceramics
I.J. Kim1, L.G. Gauckler2
1 Institute for Processing and Application of Inorganic Materials (PAIM), Department of Materials Science and Engineering, Hanseo University, 360 Haemi-Myun, Seosan City, Chungnam 356 – 820, Republic of Korea.
2 Non-Metallic Inorganic Materials, Swiss Federal Institute of Technology Zurich, Wolfgang-Pauli-Strasse 10, CH 8093 Zurich, Switzerland.
received December 11, 2011, received in revised form March 28, 2012, accepted May 10, 2012
Vol. 3, No. 2, Pages 49-60 DOI: 10.4416/JCST2011-00049
Abstract
The thermal instability of Al2TiO5 can be mitigated using solid solutions of MgO, Fe2O3, TiO2, and ZrO2 in the Al2TiO5 lattice or grain boundary solutions with additives such as SiO2, ZrO2, ZrTiO4, or mullite, most of which do not form solid solutions with Al2TiO5 but rather restrain the tendency of Al2TiO5 toward decomposition. The additives SiO2 and ZrO2 do not have a significant effect on the thermal stability of Al2TiO5, even after long annealing at the critical temperature of 1100 °C. Mullite retarded decomposition and increased thermal stability between 750 and 1300 °C. Literature regarding the formation, decomposition and thermal stability of Al2TiO5 ceramics with different inorganic materials exhibiting thermal expansion and excellent thermal shock resistance is discussed with regard to the application of the materials at high temperature, especially as diesel particulate filters.
Download Full Article (PDF)
Keywords
Al2TiO5, formation, decomposition, low thermal expansion, thermal stability, thermal shock-resistant, raw materials
References
1 Gugel, E.: Ceramic design materials for engine construction, (in German) Keram. Z., 36, [9], 477 – 479, (1984).
2 Heinrich, H., Langer, M., Siebels, J.E.: Experimental results with ceramic components in passenger-car diesel engines, Volkswagen AG Research Division D-3180, Wolfsburg, Germany, (1990).
3 Wright, R.E. Acoustic emission of aluminium titanate, J. Am. Ceram. Soc., 5, [5], 54 – 56, (1972).
4 Morosin, B., Lynch R.W.: Structure studies on Al2TiO5 at Room Temperature and at 600 °C, Acta Crystallogr., B28, 1040 – 1046, (1972).
5 Buessem, W.R., Thielke, N.R., Sarakauskas, R.V.: Thermal expansion hysteresis of aluminium titanate, Ceram. Age, 38 – 40, (1952).
6 Ohya, Y., Nakagawa, Z.: Grain boundary microcracking due to thermal expansion anisotropy in aluminium titanate ceramics, J. Am. Ceram. Soc., 70, [8], C184 – 186, (1987).
7 Kim, I.J.: Thermal shock resistant and mechanical properties of aluminum titanate-mullite and powder preparation by sol-gel process, Dissertation, RWTH Aachen, Germany, (1991).
8 Kato, E., Daimon, K., Takahashi, J.: Decomposition temperature of β-Al2TiO5, J. Am. Ceram. Soc., 63, [5 – 6], 355 – 356, (1980).
9 Staudt, T.: Properties, Corrosion Behavior and Possible Applications of Fused Aluminium Titanate, (in German), Dissertation, RWTH Aachen, Germany, (1988).
10 Thomas, H.A.J., Sterens, R.: Aluminium titanate a literature review: Part 1, Microcracking phenomena, Br. Ceram. Trans. J., 88, 144 – 151, (1989).
11 Han, C., Selb, D.: Improvement of aluminium titanate ceramics, (in German), Sprechsaal, 118, [12], 1157 – 1166, (1985).
12 Buscaglia, V., Battilana, G., Leoni, M., Nanni, P.: Decomposition of Al2TiO5-MgTi2O5 solid solution: A thermodynamic approach, J. Mater. Sci., 31, 5009 – 5016, (1996).
13 Kim I.J.: Thermal stability of Al2TiO5 ceramics for new diesel particulate filter applications, J. Ceram. Process. Res., 11, [4], 411 – 418, (2010).
14 Lee, S.C., Wahlbeck, P.G.: Chemical kinetics and mechanism for the formation reaction of Al2TiO5 from alumina and titania, High Temp. Sci., 21, 27 – 40, (1986).
15 Nützenadel, P.: Tialite, a ceramic material with good thermal shock resistance, (in German), in Freiberger Forschungsheft A 604 VEB Deutscher Verlag f. Grundstoffindustrie, Leipzig, 7 – 41, (1979).
16 Jung, J., Feltz, A., Freudenberg, B.: Improved thermal stability of al-titanate solid solutions, cfi/Ber. DKG, 70, [6], 299 – 301, (1993).
17 Zografou, C., Okupia, G.S., Kroenert, W., Staudt, T., Rehfeld, G.: Thermal durability of aluminium titanate ceramics prepared from electrofused powders, Sci. Ceram., 14, 757, (1987).
18 Freudenberg, B., Linder, H.A., Gugel, E., Thometzek, P.: Thermomechanical properties of aluminium titanate ceramic between 20 and 1000 °C, ECRs, 2, 264 – 271, (1989).
19 Sobhani, M., Rezaie, H.R., Naghizadeh, R.: Sol-gel synthesis of aluminium titanate (Al2TiO5) nano-particles, J. Mater. Process. Tech., 206, 282 – 285, (2008).
20 Prasadarao, A.V., Selvarai, U., Komarneni, S., Bhalla, A.S., Roy, R.: Enhanced densification by seeding of sol-gel-derived aluminium titanate, J. Am. Ceram. Soc., 75, [6], 1529 – 1553, (1992).
21 Woignier, T., Lespade, P., Phallippon, J., Rogier, R.: Al2O3-TiO2 and Al2TiO5 ceramic materials by the sol-gel process, J. Non-Cryst. Solids, 100, 325 – 529, (1988).
22 Suzuki, H.: Preparation of aluminium titanate from metal alkoxides and the effect of magnesium additives, J. Jpn. Soc. Powder Metall., 34, [1], 8 – 13, (1987).
23 Okamura, H., Barringer, E.A., Bowen, H.K.: Preparation and sintering of monosized Al2O3-TiO2 composite powder, J. Am. Ceram. Soc., 69, [2], C-22-C-24, (1986).
24 Kim, I.J., Lee, K.S.: Characterization of aluminum titanate mullite ceramics synthesized by a semi sol-gel method, J. Ceram. Process. Res., 3, [4], 202 – 209, (2003).
25 Hori, S., Ishii, Y., Yoshimura, M., Somiya, S.: Preparation of co-deposited Al2TiO5 powders by vapor phase reaction using combustion flame, Yogyo-Kyokai-Shi, 94, [4], 400 – 408, (1986).
26 Hori, S., Kurita R., Yoshimura M., Somiya S.: Sintering of CVD aluminium oxide-titanium dioxide powders, Int. J. High Tech. Cer., 1, 59 – 67, (1985).
27 Hamano, K., Ohya, Y., Nakagawa, Z.: Microstructure and mechanical strength of aluminium-titanate ceramic prepared from mixture of alumina and titania, Yogyo Kyokai Shi, 91, [2], 94 – 101, (1983).
28 Freudenberg, B., Mocellin, A.: Aluminium titanate formation by solid-state reaction of fine Al2O3 and TiO2 powders, J. Am. Ceram. Soc., 70, [1], 33 – 38, (1987).
29 Boden, P., Glasser, F.P.: Phase relationship in the system Al2O3-TiO2-MgO, Trans. Brit. Cer. Soc., 72, 215 – 220, (1973).
30 Bhattacharyya, B.N., Sen, S.: Aluminium titanate formation and properties, Cent. Glass Ceram. Res. Inst. Bull. (India), 12, 92 – 103, (1965).
31 Cini, L.: Investigationes sobre el aluminato de titanio, Bol. Soc. Espan. Cer., 5, 505 – 514, (1966).
32 Neumann-Lischka, S.: Influence of different dopings on properties and microstructure of Al2TiO5 materials, in German, Dissertation, RWTH Aachen, Germany, (1989).
33 Bron, V.A.: Conditions for the formation of aluminium titanate as a function of temperature and time (in Russian), Doklady Akad. Nauk. SSSR, 91, 505 – 514, (1953).
34 Kim, K.Y.: High technology ceramics processing, KAIST Fine Ceramics Research Lab., 96 – 103, (1986).
35 Morishima, H., Kato, Z., Saito, K., Yano, T., Ootsuka, N.: Synthesis of aluminium titanate-mullite composite having high thermal shock resistance, J. Mater. Sci. Lett., 6, 389 – 390, (1987).
36 Bonhomme-Coury, L., Lequeux, N., Mussotte, S., Boch, P.: Preparation of Al2TiO5-ZrO2 Mixed Powders via Sol-Gel Process, J. Sol-Gel Sci. Techn., 2, [1 – 3], 371 – 375, (1994).
37 Innocenzi, P., Martucci, A.: Sol-gel synthesis of β-Al2TiO5 thin films at low temperature, Chem. Mater., 12, [2], 517 – 524, (2000).
38 Tudyka, S., Planz, K., Stroh, N., Aldinger, F.: Al2TiO5-New contribution to its preparation via sol-gel technique, 22nd Annual Conference on Composites, Advanced Ceramics, 19, (2010).
39 Licoccia, S., Luisa di Vona, M., Traversa, E.: Low-temperature sol-gel preparation of Al2TiO5 thin films: Spectroscopic analysis of the precursors, J. Sol-Gel Sci. Techn., 19, [1 – 3], 577 – 580, (2000).
40 Stanciu, L., Groza, J.R., Stoica, L., Plapcianu, C.: Influence of powder precursors on reaction sintering of Al2TiO5, Scripta Mater., 50, 1259 – 1262, (2004).
41 Jambazov, S., Lepkova, D.: Synthesis and properties of A12TiO5, J. Eur. Ceram. Soc., 3, 1013 – 1018, (1993).
42 Rezaie, H.R., Sobhani, M., Naghizadeh, R.: Formation and decomposition of sol-gel synthesized aluminum titanate nano powder at the presence of Fe2O3 additive, Defect Diffus. Forum, 237 – 276, 549 – 553, (2008).
43 Andrianainarivelo, M., Corriu, R.J.P., Leclercq, D., Mutin, P.H., Vioux, A.: Nonhydrolytic sol-gel process: Aluminium and zirconium titanate gels, J. Sol-Gel Sci. Techn., 8, 89 – 93, (1997).
44 Coury, L., Lequez, N., Mussotte, S., Boch, P.: Preparation of Al2TiO5-ZrO2 Mixed powders via sol-gel process, J. Sol-Gel Sci. Techn., 2, 371 – 375, (1994).
45 Innocenzi, P., Martucci, A., Armelao, L.: Sol-gel synthesis of β-Al2TiO5 thin films at low temperature, J. Eur. Ceram. Soc., 25, 3587 – 3591, (2005).
46 Walter, G., Ludwig, N., Horst, S.: Thermodynamics and statistical mechanics, Springer-Verlag, (1995).
47 Barin, I., Knacke, O.: Thermochemical properties of inorganic substrates, Springer Verlag, Verlag Stahleisen m.b.H. Duesseldorf, (1977).
48 Gani, M.S., McPherson, R.: The enthalpy of formation of aluminium titanate, Thermochim. Acta, 7, 251 – 252, (1973).
49 Slepetys, R.A., Vaughan, P.A.: Solid solution of aluminium oxide in rutile titanium dioxide, J. Phys. Chem., 73, 2157 – 2162, (1969).
50 Bonnickson, K.R.: High temperature heat contents of some titanates of aluminium, iron, and zinc, J. Am. Chem. Soc., 77, 2152 – 2154, (1955).
51 Kubaschewski, O.: Therda's database, (in German), Institute for Theoretical Metallurgy, Aachen, (1986).
52 Knacke, O., Kubaschewski, O., Hasselmann, K.: Thermochemical properties of inorganic substances, Springer Verlag. Verlag Stahleisen m.b.H., Duesseldorf, (1991).
53 Woermann, E., Ender, A., Hofmann, R., Stapper, L., Dhupia, G.: The stability of pseudobrookite mixed crystals, (in German), Fortschr. Min., 58 Beiheft 126, (1980).
54 Lang, S.M., Fillmore, C.L., Maxwell, L.H.: The phase diagram of the Al2O3: TiO2 System, J. Res. NBS (US), 48, [4], 298 – 312, (1952).
55 Lejus, A.M., Goldberg, D., Revcolevschi A.: New compounds formed between rutile and oxides of trivalent and tetravalent metals, C. R. Seances Acad. Sci., Ser. C, 263, [20], 1223 – 1226, (1966).
56 Pena, P., DeAza, S.: Ceramica (Florence), 33, [3], 23 – 30, (1980).
57 Kameyama, T., Yamaguchi, T.: Kinetic studies on the eutectoid decomposition of Al2TiO5, J. Cer. Soc. Japan, 84, 589, (1976).
58 Kato, E., Daimon, K., Kobayashi, Y.: Improvement in sinterability of Al2TiO5 by partial decomposition, Am. Ceram. Soc. Bull., 57, 756, (1978).
59 Hennicke, H.W., Lingenberg W.: Microcrack structure and physical properties of aluminium titanate, Fortschrittsberichte der DKG, Band 1, Heft 3, 73 – 75, (1985).
60 Bauka, C. E.: Industrial burners handbook, CRC Press, (2004).
61 Ziman, J.: The thermal properties of materials, Sci. Am., 217, [3], 180 – 188, (1967).
62 Sautet, J.C., Salenty, L., Taranto, M. D.: Large-scale turbulent structures in non-premixed, oxygen enriched flames, Int. Commun. Heat Mass, 28, 277 – 285, (2001).
63 Parke, F.J.: A12TiO5 -ZrTiO4 -ZrO2 composites: A new family of low-thermal-expansion ceramics, J. Am. Ceram. Soc., 73, [4], 929 – 932, (1990).
64 Bueno, S., Moreno, R., Baudín, C.: Reaction-sintered Al2O3/Al2TiO5 microcrack-free composites obtained by colloidal filtration, J. Eur. Ceram. Soc., 24, 2785 – 2791, (2004).
65 Meléndez-Martínez, J.J., Jiménez-Melendo, M., Domínguez-Rodríguez, A., Woetting, G.: High temperature mechanical behavior of aluminium titanate-mullite composites, J. Eur. Ceram. Soc., 21, 63 – 70, (2001).
66 Buscaglia, V., Nanni, P.: Decomposites of Al2TiO5 and Al2(1-x)MgxTi(1+x)O5 Ceramics, J. Am. Ceram. Soc., 81, [10], 2645 – 2653, (1998).
67 Kuszyk, J.K., Bradt, R.G.: Influence of grain size on effects of thermal expansion anisotropy in MgTi2O5, J. Am. Ceram. Soc., 56, [8], 420 – 423, (1973).
68 Kim, I.J., Zhao, F., Gong, J., Lee, K.S., Han, I.S., Kuk, W.S.: Thermal durability of aluminum titanate-mullite composites with high thermal shock resistance, J. Ceram. Process. Res., 4, [2], 71 – 79, (2003).
69 Lingenberg, W.: Material properties of Al2TiO5 with particular consideration of formation and decomposition reactions, (in German), Dissertation, TU Clausthal, Germany (1985).
70 Lübke, I.: Tests on the behaviour of aluminium titanate in heavy clay ceramic materials, Dipl.Arbeit, in German, TU Clausthal, Germany, (1982).
71 Ogunwumi, S.B., Tepesch, P.D.: Mullite-aluminum titanate diesel exhaust filter, U.S. Patent 6, 849, 181 B2, (2005).
72 Gheorghiu, T.C., Spetseris, M.A.: Method for controlling the firing of ceramics, U. S. Patent 6, 511, 628 B2, (2003).
73 Fukuda, T., Yoko, T., Takahashi, M., Fukuda, M., Fukuda, M.: Magnesium aluminum titanate crystal structure and method for producing same, US 224110A, (2007).
74 Fukuda, M., Fukuda, M., Fukuda, T., Takahashi, M., Yoko, T.: Honeycomb filter for cleaning exhaust gas and method for manufacturing the same. J. P. Patent Application 105622A2, (2007).
75 Fukuda, M., Fukuda, M., Yoko, T., Takahashi, M.: Magnesium aluminum titanate crystal structure and method for producing same, E.P. Patent Application 1 741 684 A1, (2007).
76 Fukuda, T., Fukuda, M., Fukuda, M., Yoko, T., Takahashi, M.: Honeycomb filter for clarifying exhaust gas and method for manufacture thereof, E.P. Patent Application 1 645 319 A1, (2006).
77 Fukuda, T., Fukuda, M., Fukuda, M., Yoko, T., Takahashi, M.: Honeycomb carrier for exhaust gas clarification catalyst and method for production thereof, E.P. Patent Application 1 652 830 A1, (2006).
78 Fukuda, T., Fukuda, M., Fukuda, M.: Process for preparing sintered body of aluminium titanate, CA 2 325 172 A1, (2001).
79 Asami, S., Harada, T., Hamanaka, T.: Aluminium titanate-mullite base ceramics, E.P. Patent Application 0 210 813 A2, (1987).
80 Asami, S., Hamanaka, T., Harada, S.: Aluminium titanate-mullite based ceramic body, J.P. Patent Application 300 875 7 A2, (1991).
81 Buessem, W.R., Thielke, N.R., Sarakauskas, R.V.: Thermal expansion hysteresis of aluminum titanate, Ceram. Age, 60, 38 – 40, (1952).
82 Yoko, T., Takahashi, M., Fukuda, T., Fukuda, M., Fukuda, M.: Honeycomb filter for clarifying exhaust gas and method for manufacture thereof, E.P. Patent Application 1 666 119 A1, (2006).
83 Fukuda, M., Fukuda, M., Fukuda, T., Takahashi, M., Yoko, T.: Method for producing aluminum titanate sintered compact, J. P. Patent Application 04813, (2003).
84 Fukuda, T., Fukuda, M., Fukuda, M., Yoko, T., Takahashi, M.: Method for producing aluminum magnesium titanate sintered product, E.P. Patent Application 1 559 696 A1, (2005).
85 Fukuda, T., Fukuda, M., Fukuda, M.: Process for preparing sintered body of aluminum titanate, E.P. Patent Application 1 156 023 B1, (2004).
86 Aluminum Titanate-Based Porous ceramic body, J.P. Patent Application 096 634, (2006).
87 Watanabe, K., Suwabe, H.: Ceramic honeycomb filter and method of manufacturing the same, E.P. Patent Application 1 666 118 A1, (2006).
88 Buscaglia, V., Delfrate, M.A., Leoni, M., Bottino, C., Nanni, P.: Decomposition of Al2TiO5-MgTi2O5 solid solution: A thermodynamic approach, J. Mater. Sci., 31, 1715 – 1724, (1996).
89 Wechsler, B.A., Navrotsky, A.: Thermodynamics and structural chemistry of compounds in the system MgO-TiO2, J. Solid State Chem., 55, 165 – 180, (1984).
90 Freudenberg, B.: Study of the solid state reaction Al2O3-+TiO2→Al2TiO5, (in French), Thesis EPFL, no 709, (1987).
91 Pohlmann, H.J., Schricker, K., Schüller, K.H.: Studies on materials in the Al2O3-TiO2-SiO2 system, Ber. Dt. Keram. Gas., 52, [6], 179 – 183, (1975).
92 Kim, I.J., Kwak, H.S.: Thermal shock resistance and thermal expansion behavior with composition and microstructures of Al2TiO5 Ceramics, Can, Metall. Quart., 39, [4], 387 – 395, (2000).
93 Boccaccini, A.R., Pfeiffer, K., Kern, H.: Thermal shock resistant Al2TiO5-glass matrix composite, J. Mater. Sci. Lett., 18, 1907 – 1909, (1999).
94 Kim, H.C., Lee, K.S., Kweon, O.S., Aneziris, C.G., Kim, I.J.: Crack healing, reopening and thermal expansion behavior of Al2TiO5 Ceramics at High Temperature, J. Eur. Ceram. Soc., 27, 581 – 584, (2007).
95 Mélendez-Martínez, J.J., Jiménez-Melendo, M., Domínguez-Rodríguez, A., Wötting, G.: High temperature mechanical behavior of aluminium titanate-mullite composites, J. Eur. Ceram. Soc., 21, 63 – 70, (2001).
96 Kim, I.J., Zhao, F., Gong, J., Lee, K.S., Han, I.S., Kuk, W.S.: Thermal durability of Al2TiO5-mullite composites with high thermal shock resistance, J. Ceram. Process. Res., 4, [2], 71 – 79, (2003).
97 Nagano, M., Nagashima, S., Maeda, H., Kato, A.: Sintering behavior of Al2TiO5 base ceramics and their thermal properties, Ceram. Int., 12, 681 – 687, (1999).
98 Kim, I.J., Cao, G.: Thermal durability and low thermal expansion behavior of Al2TiO5-ZrTiO4 ceramics between 750 and 1400 °C, J. Eur. Ceram. Soc., 22, 2627 – 2632, (2002).
99 Brady, M.D., Deneka, T.J., Ogunwumi, S.B., Shustack, P.J., Tennent, D.L., Tepesch, P.D., Wang, J., Warren, C.J.: Aluminium titanate ceramic forming batch mixtures and green bodies including pore former combination and methods of manufacturing and firing same, US 0006561 A1, (2007).
100 Aluminium titanate-based ceramic and product method, KR10 – 2007 – 0012506, US 60/564,081, PCT/US 009596, (2005).
101 Merkel, G.A.: Narrow pore size distribution aluminium titanate body and method for making same, US 0214759 A1, (2007).
102 Merkel G. A.: Mullite-aluminium titanate body and method for making same, US 0021308 A1, (2006).
103 Merkel G. A.: Narrow pore size distribution aluminium titanate body and method for making same, US 0021309 A1, (2006).
104 Beall, G.H., Melscoet-Chauvel, I.M., Ogunwumi, S.B., Julien, D.J.S., Tepesch, P.D., Warren, C.J.: Aluminium titanate-based ceramic article, US 7,001,861 B2, (2006).
105 Ogunwumi, S.B., Tepesch, P.D.: Ceramic body based on aluminium titanate and including a glass phase, US 7,071,135 B2, (2006).
106 Aluminum titanate ceramic articles and method of making same, U.S. Patent Application 281,627 A1, (2006).
107 Alumina-bound high-strength ceramic honeycomb, U.S. Patent Application 6,677,261 B1, (2004).
108 Ceramic body based on aluminum titanate, U.S. Patent Application 6,942,713 B2, (2005).
109 Kaori, T.: Method of manufacturing porous body, U.S. Patent Application 0063398 A1, (2007).
110 Katsuhiro, I.: Method of manufacturing porous body, U.S. Patent Application 0063398 A1, (2007).
111 Makino, K.: Process of the production of a ceramic structure, (in German), D. E. Patent 10 2006 000 291 A1, (2006).
112 Kumazawa, K., Kotani, W.: Honeycomb regenerator, E.P. Patent Application 0 724 126 A2, (1996).
113 Noguchi, Y., Fukao, K., Miwa, S.: Aluminium titanate ceramics and methods for their manufacturing, (in German), D.E. Patent 42 32 640 C3, (1993).
114 Asammi, S., Harada, T., Hamanaka, T.: Aluminium titanate-mullite base ceramics, E.P. Patent Application 0 210 813, (1987).
115 Freudenberg, B., Seyer, J., Gugel, E.: Sintered ceramic materials based on aluminium titanate, A process for their production and their use, US 5 153 153, (1992).
116 Process for the production of a ceramic materials and its application, (in German), D.E. Patent 37 07 396 C2, 1988.
117 Parker, P.J.: Low thermal expansion ZrTiO4-Al2TiO5-ZrO2 compositions, E.P. Patent Application 0278 456 A2, (1988).
118 A method for producing aluminium titanate-zirconium titanate ceramics with low expansion behavior. KR 0 486 121, 2006.
119 Kim, I.J., Lee, K.S., Cao, G.Z.: Low thermal expansion behavior and thermal durability of Al2TiO5-ZrTiO4 Ceramics, Lat. Am. J.Metall. Mater., 20, [2], 59, (2000).
120 Manabu, I., Tatsuya, H., Makoto, T., Tomonori, T.: Ceramic filter. U. S. Patent Application 0213165 A1, (2006).
121 Fukuda, T., Fukuda, M., Fukuda, M., Yoko, T., Takahashi, M.: Honeycomb filter for clarifying exhaust gas and method for manufacture thereof, US 059484A, (2007).
122 Fukuda, T., Fukuda, M., Fukuda, M.: Method for producing aluminum titanate sintered object, U. S . Patent Application 7 011 788 B2, (2006).
123 Fukuda, M., Fukuda, M., Fukuda, T., Takahashi, M., Yoko, T.: Method for processing aluminum titanate sintered compact, E. P. Patent Application 1 514 857 A1, (2005).
124 Fukuda, T., Fukuda, M., Fukuda, M.: Method for producing aluminum titanate sintered object, E. P. Patent Application 1 338 581 A1, (2003).
125 Process for producing ceramic honeycomb structure. WO 2007/015 495 A1, (2007).
126 Noguchi Y., Miwa S., Fukao, K.: Aluminium titanate ceramics and processes for the manufacture thereof, D. E. Patent 42 28 527 C2, (1993).
127 Tokudome, O., Suwabe, H., Sekiguchi, K., Yamane, H.: Ceramic honeycomb structure and ceramic body used for extrusion-molding the structure. E. P. Patent Application 1 666 436 A1, (2006).
128 Fukuda, T., Fukuda, M., Fukuda, M.: Process for preparing sintered body of aluminium titanate, U. S. Patent Application 6.403 019 B1, (2002).
129 Fukuda, T., Fukuda, M., Fukuda, M.: Process for preparing sintered body of aluminium titanate, C. A. Patent Application 2 325 172 A1, (2001).
130 Odaka, F., Tanuma, E.: High-temperature ceramic filter, E. P. Patent Application 0586 102 A1, (1994).
131 Li, M., Chen, F., Shen, Q., Zhang, L.: Fabrication and thermal properties of Al2TiO5 ceramics, Mater. Sci.-Poland, 28, 3663, (2010).
132 Pena, P., Aza, D.: Phase studies in the system ZrO2-Al2O3-SiO2-TiO2, Sci. Ceram., 12, 201, (1984).
133 Yano, T., Nagai, N., Kiyohara, M., Saito, K., Otsuka, N.: Thermal and mechanical properties of aluminium titanate-mullite composites, Part 1, J. Ceram. Soc. Japan, 94, 44 – 50, (1986).
134 Morishima, H., Kato, Z., Saito, K., Yano, K., Ootsuka, N.: Synthesis of aluminium titanate-mullite composite having high thermal shock resistance, J. Mater. Sci. Letters, 6, 389 – 390, (1987).
135 Hasselmann, D.P.H.: Approximate theory of thermal stress resistance of brittle ceramic involving creep, J. Am Ceram. Soc., 50, (1967).
136 Munz, D., Fett, T.: Mechanical behavior of ceramic materials, (in German), Werkstoffforschung und -technik, Band 8. Springer Verlag (1989).
137 Hasselman, D.P.H.: Elastic energy at fracture and surface energy as design criteria for thermal shock, J. Am Ceram. Soc., 46, 535 – 540, (1963).
138 Hasselman, D.P.H.: Crack propagation under constant deformation and Thermal Stress fracture, J. Fract. Mech., 7, 157 – 161, (1971).
139 Kim, I.J., Gauckler L.J.: Excellent thermal shock resistant materials with low thermal expansion coefficient, J. Ceram. Process. Res., 9, [3], 240, (2008).
140 Aza, D., Richmond, S., White, C.: Compatibility relationships of periclase in the system CaO-MgO-ZrO2-SiO2, Trans. J. Br. Ceram. Soc., 73, [4], 109, (1974).
141 Kim, I.J.: Thermal shock resistance and thermal expansion behavior of Al2TiO5 ceramics prepared from electrofused powders, J. Ceram. Process. Res., 1, [1], 57 – 63, (2000).
Copyright
Göller Verlag GmbH