• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Colloidal Processing and CO2-Capture Performance Al2O3-Zeolite 13X Composites

L. Andersson, F. Akhtar, A. Ojuva, L. Bergström

Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden

received October 7, 2011, received in revised form December 14, 2011, accepted January 16, 2012

Vol. 3, No. 1, Pages 9-16   DOI: 10.4416/JCST2012-00039

Abstract

Hierarchically porous composites for CO2-capture have been produced by coating the inner walls of foam-like macroporous alumina monoliths, produced by templated synthesis, with microporous zeolite 13X particles. Homogeneous and dense coatings of the particulate adsorbent were obtained when the impregnation process was performed at a pH above 9. At this pH-level the colloidally stable suspensions of the negatively charged zeolite 13X particles could fill all the voids of the highly connected pore space of the alumina supports and attach to the monolith walls, which had been pre-coated with poly(ethylene imine). A CO2-uptake as high as 5 mmol CO2/g zeolite 13X was achieved for alumina-zeolite 13X composites through minimisation of the added inorganic binder, kaolin, to only 3.0 wt% with respect to zeolite content, and through optimisation of the thermal treatment.

Download Full Article (PDF)

Keywords

CO2-uptake, adsorption, colloids, alumina, macroporous

References

1 Yang, H., Xu, Z., Fan, M., Gupta, R., Slimane, R. B., Bland, A. E., Wright, I.: Progress in Carbon Dioxide Separation and Capture: A review, J. Environ. Sci., 20, 14 – 27, (2008).

2 Rochelle, G.T.: Amine scrubbing for CO2 capture, Science, 325, 1652 – 1654, (2009).

3 Ray, M.S.: Pressure swing adsorption: A review of UK patent literature, Separ. Sci.Technol., 21, 1 – 38, (1986).

4 Chue, K.T., Kim, J.N., Yoo, Y.J., Cho, S.H.: Comparison of activated carbon and zeolite 13X for CO2 recovery from flue gas by pressure swing adsorption, Ind. Eng. Chem. Res., 34, 591 – 8, (1995).

5 Mosca, A., Hedlund, J., Webley, P.A., Grahn, M., Rezaei, F.: Structured zeolite NaX coatings on ceramic cordierite monolith supports for PSA applications, Micropor. Mesopor. Mat., 130, 38 – 48, (2010).

6 Yazaydin, A.O., Benin, A.I., Faheem, S.A., Jakubczak, P., Low, J.J., Willis, R.R., Snurr, R.Q.: Enhanced CO2 adsorption in metal-organic frameworks via occupation of open-metal sites by coordinated water molecules, Chem. Mater., 21, 1425 – 30, (2009).

7 Liu, Q., Cheung, N.C.O., Garcia-Bennett, A.E., Hedin, N.: Aluminophosphates for CO2 Separation, ChemSusChem, 4, 91 – 7, (2011).

8 Li, P., Tezel, F.H.: Equilibrium and kinetic analysis of CO2-N2 adsorption separation by concentration pulse chromatography, J. Colloid Interf. Sci., 313, 12 – 7, (2007).

9 Harlick, P.J.E. and Tezel, F.H.: An experimental adsorbent screening study for CO2 removal from N2, Micropor. Mesopor. Mat., 76, 71 – 9, (2004).

10 Ruthven, D.M.: Principles of adsorption and adsorption processes, John Wiley & Sons, Inc, New York, (1984).

11 Liu, W., King, D., Liu, J., Johnson, B., Wang, Y., Yang, Z.: Critical material and process issues for CO2 separation from coal-powered plants, JOM J. Min.Met.Mat. S., 61, 36 – 44, (2009).

12 Rezaei, F., Webley, P.: Structured adsorbents in gas separation processes, Sep. Purif. Technol., 70, 243 – 256, (2010).

13 Richardson, J.T., Peng, Y., Remue, D.: Properties of ceramic foam catalyst supports: Pressure drop, Appl. Catal., 204, 19 – 32, (2000).

14 Aranzabal, A., Iturbe, D., Romero-Sáez, M., González-Marcos, M.P., González-Velasco, J.R., González-Marcos, J.A.: Optimization of process parameters on the extrusion of honeycomb shaped monolith of H-ZSM-5 zeolite, Chem. Eng. J., 162, 415 – 23, (2010).

15 Akhtar, F., Bergström, L.: Colloidal processing and thermal treatment of binderless hierarchically porous zeolite 13X monoliths for CO2 Capture, J. Am. Ceram. Soc., 94, 199 – 205, (2011).

16 Colombo, P., Vakifahmetoglu, C., Costacurta, S.: Fabrication of ceramic components with hierarchical porosity, J. Mat. Sci., 45, 5425 – 5455, (2010).

17 Tong, Y., Zhao, T., Li, F., Wang, Y.: Synthesis of monolithic zeolite beta with hierarchical porosity using carbon as a transitional template, Chem. Mater., 18, 4218 – 4220, (2006).

18 Carn, F., Saadaoui, H., Massé, P., Ravaine, S., Julian-Lopez, B., Sanchez, C., Deleuze, H., Talham, D.R., Backov, R.: Three-dimensional opal-like silica foams, Langmuir, 22, 5469 – 5475, (2006).

19 Lee, Y., Lee, J.S., Park, Y.S., Yoon, K.B.: Synthesis of large monolithic zeolite foams with variable macropore architectures, Adv. Mater., 13, 1259 – 1263, (2001).

20 Dong, A., Wang, Y., Tang, Y., Ren, N., Zhang, Y., Yue, Y., Gao, Z.: Zeolitic tissue through wood cell templating, Adv. Mater., 14, 926 – 929, (2002).

21 Silva, E.R., Silva, J.M., Vaz, M.F., Oliveira, F.A.C., Ribeiro, F.: Cationic polymer surface treatment for zeolite washcoating deposited over cordierite foam, Mater. Lett., 63, 572 – 574, (2009).

22 Avila, P., Montes, M., Miró, E. E.: Monolithic reactors for environmental applications: A review on preparation technologies, Chem. Eng. J., 109, 11 – 36, (2005).

23 Zampieri, A., Colombo, P., Mabande, G.T.P., Selvam, T., Schwieger, W., Scheffler, F.: Zeolite coatings on microcellular ceramic foams: A novel process route to microreactor and microseparator devices, Adv. Mater., 16, 819 – 823, (2004).

24 Andersson, L., Jones, A.C., Knackstedt, M.A., Bergström, L.: Permeability, pore connectivity and critical pore throat control of expandable polymeric sphere templated macroporous alumina, Acta Mat., 59, 1239 – 1248, (2011).

25 Andersson, L., Jones, A., Knackstedt, M.A., Bergström, L.: Three-dimensional structure analysis by x-ray micro-computed tomography of macroporous alumina templated with expandable microspheres, J. Eur. Ceram. Soc., 30, 2547 – 2554, (2010).

26 Woolery, G.L., Alemany, L.B., Dessau, R.M., Chester, A.W.: Spectroscopic evidence for the presence of internal silanols in highly siliceous ZSM-5, zeolites, 6, 14 – 16, (1986).

27 Kloprogge, J.T., Komarneni, S., Yanagisawa, K., Fry, R., Frost, R.L.: Infrared emission spectroscopic study of the dehydroxylation via surface silanol groups of synthetic and natural beidellite, J. Colloid Interf. Sci., 212, 562 – 569, (1999).

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2025 Göller Verlag GmbH