Articles
All articles | Recent articles
Feasibility Study on Rapid Prototyping of Porcelain Products
X. Tian1, T. Mühler2, C. Gomes3, J. Günster3, J.G. Heinrich2
1 State Key Laboratory of Mechanical Manufacture System Engineering, Xi'an Jiaotong University, Xi'an 710049, China
2 Department for Engineering Ceramics, Clausthal University of Technology, 38678 Clausthal-Zellerfeld, Germany
3 BAM Federal Institute of Materials Research and Testing, Berlin, Germany
received September 27, 2011, received in revised form November 10, 2011, accepted November 18, 2011
Vol. 2, No. 4, Pages 217-226 DOI: 10.4416/JCST2011-00038
Abstract
In order to reduce the time to market of new or customized porcelain products or artworks, rapid prototyping using layer-wise slurry deposition (LSD) was studied in the present research. The properties such as phase composition, microstructure, shrinkage, density, and mechanical strength, of laser-sintered (LS) and biscuit-fired (BF) samples before and after post-sintering in a furnace were studied and compared with each other. The laser-sintered sample was comparable with the biscuit-fired sample with regard to porosity, but had just half the mechanical strength of the latter. The feasibility of rapid prototyping of porcelain products was validated by the successful fabrication of two models (thick-wall pipe and double heart), which showed that the relatively low mechanical strength of the laser-sintered samples was still high enough for the downstream handling processes.
Download Full Article (PDF)
Keywords
Layer-wise slurry deposition, mechanical properties, porcelain, structural applications, rapid prototyping
References
1 Jacobs, F.P.: Rapid prototyping and manufacturing fundamentals of stereolithography, Dearborn, SME, (1992).
2 Nelson, J.C., Xue, S., Barlow, J.W., Beaman, J.J., Marcus, H.L., Bourell, D.L.: Model of the selective laser sintering of bisphenol-a polycarbonate. Ind. Eng. Chem. Res., 32, 2305 – 17, (1993).
3 Yardimci, M.A., Guceri, S.: Conceptual framework for the thermal process modeling of fused deposition, J. Rapid Prototyp., 2, 26 – 30, (1996).
4 Das, S., Wohlert, M., Beam, J.J., Bourell, D.L.: Producing metal parts with selective laser sintering/hot isostatic pressing, JOM, 50, 17 – 20, (1998).
5 Mazumder, J., Choi, J., Nagarthnam, K., Koch, J., Hetzner, D.: The direct metal deposition of H13 tool steel for 3D components. JOM, 49, 55 – 60, (1997).
6 Griffith, M.L., Halloran, J.W.: Freeform fabrication of ceramics via stereolithography, J. Am. Ceram. Soc., 79, 2601 – 8, (1996).
7 Allahverdi, M., Danforth, S.C., Jafari, M., Safari, A.: Processing of advanced electroceramic components by fused deposition technique, J. Eur. Ceram. Soc., 21, 1485 – 90, (2001).
8 Grida, I., Evans, J.R.G.: Extrusion freeforming of ceramics through fine nozzles, J. Eur. Ceram. Soc., 23, 629 – 35, (2003).
9 Bertrand, P.H., Bayle, F., Combe, C., Goeuriot, P., Smurov, I.: Ceramic components manufacturing by selective laser sintering, Appl. Surf. Sci., 254, 898 – 992, (2007).
10 Regenfuss, P., Streek, A., Ullmann, F., Kuehn, C., Hartwig, L., Horn, M., Exner, H.: Laser micro sintering of ceramic materials: part 2. Interceramics, 57, 6 – 9, (2008).
11 Günster, J., Engler, S., Heinrich, J.G.: Forming of complex-shaped ceramic products via layer-wise slurry deposition (LSD), Bull. Eur.Ceram.Soc., 1, 25 – 8 (2003).
12 Gahler, A., Heinrich, J.G., Günster, J.: Direct Laser Sintering of Al2O3-SiO2 Dental ceramic components by layer-wise slurry deposition, J. Am. Ceram. Soc., 89, 3076 – 80, (2006).
13 Tian, X., Günster, J., Melcher, J., Li, D., Heinrich, J.G.: Process parameters analysis of direct laser sintering and post treatment of porcelain components using taguchi's method, J. Eur. Ceram. Soc., 29, 1903 – 15, (2009).
14 Kingery, W.D.: Introduction to ceramics. New York, London: John Wiley &Sons, Inc., (1960).
15 Carty M.W., Senapati U.: Porcelain — raw materials, processing, phase evolution, and mechanical behavior, J. Am. Ceram. Soc., 81, 3 – 20, (1998).
16 Nakahira, M., Brindley, W.G.: The kaolinite-mullite reaction series: I. A survey of outstanding problems, J. Am. Ceram. Soc., 42, 311 – 4, (1959).
17 Nakahira, M., Brindley, W.G.: The kaolinite-mullite reaction series: II Metakaolin, J. Am. Ceram. Soc., 42, 314 – 8, (1959).
18 Roy, R., Roy, D.M., Francis, E.E.: New data on thermal decomposition of kaolinite and halloysite, J. Am. Ceram. Soc., 38, 198 – 205 (1995).
19 Brindley, G.W., Hunter, K.: Thermal reactions of nacrite and the formation of metakaolin, alumina and mullite, Miner. Mag., 228, 574 – 84, (1955).
20 Triantafyllidis, D., Li, L., Stott, F.H.: Mechanisms of porosity formation along the solid/liquid interface during laser melting of ceramic, Appl. Surf. Sci, 208 – 209, 458 – 62, (2003).
21 Tian, X., Sun, B., Heinrich, J., Li, D.: Stress relief mechanism in layer-wise laser directly sintered porcelain ceramics, Mater. Sci. Eng. A, 527, 1695 – 703, (2010).
22 Heinrich, J.G., Gahler, A., Günster, J., Schmuecker, M., Zhang, D., Zhang, J., et al.: Microstructural evolution during direct laser sintering in the Al2O3-SiO2 system, J. Mater. Sci., 42, 5307 – 11, (2007).
23 Schmuecker, M., In: Schneider H, Komarneni S, (editors): Mullite, Weinheim, Wiley VCH, (2005).
24 Isik, E.O., Nakagawa, Z.: Bending strength of porcelains, Ceram. Int., 28, 131 – 40, (2002).
25 Maity, S., Sarkar, B.K.: Development of high-strength whiteware bodies, J. Eur. Ceram. Soc., 16, 1083 – 8, (1996).
26 Tian, X., Sun, B., Heinrich, J.G.: Scan pattern, stress and mechanical strength of laser directly sintered ceramics, submitted.
27 Schneider, H., Majdic, A., Vasudevan, R.: Kinetics of the quartz-cristobalite transformation in refractory-grade silica materials, Mater. Sci. Forum, 7, 91 – 102, (1986).
Copyright
Göller Verlag GmbH