Articles
All articles | Recent articles
Synthesis and Characterization of Mesoporous Sodium Dodecyl Sulfate-Coated Magnetite Nanoparticles
R. El-kharrag1, A. Amin1, Y. E. Greish2
1 Department of Biology, and
2 Department of Chemistry College of Science, United Arab Emirates University, Al Ain, P.O. Box 17551, UAE
received July 2, 2011, received in revised form August 1, 2011, accepted August 16, 2011
Vol. 2, No. 4, Pages 203-210 DOI: 10.4416/JCST2011-00021
Abstract
Mesoporous magnetite nanoparticles are commonly used for biomedical and environmental applications. This can be attributed to their known magnetic properties and high surface area, the latter being a virtue of their nanometer-scale size. Applying coatings with various chemical functionalities to these nanoparticles increases their scope of application. Different organic and inorganic coatings have been explored. Sodium dodecyl sulfate (SDS) is a well-known surfactant that improves the surface properties of nanoparticles. This paper explores the in situ formation of SDS coatings on the surface of mesoporous magnetite nanoparticles prepared by means of a traditional co-precipitation method in air. Coatings made from solutions containing up to 2 wt% of SDS were investigated in respect of their composition, thermal characteristics, and magnetization by means of X-ray diffraction, infrared spectroscopy, thermogravimetric analysis and magnetic susceptibility. Adsorption isotherms and detailed morphology of the coated nanoparticles were also evaluated. Results showed that SDS forms multilayers together with water on the surfaces of the nanoparticles, where a maximum initial concentration of 0.5 wt% of SDS could be used to homogeneously coat the magnetite nanoparticles. At higher concentrations, SDS detaches from the nanoparticles surfaces.
Download Full Article (PDF)
Keywords
Magnetite nanoparticles, mesoporous, sodium dodecyl sulfate, thermal analysis, magnetic susceptibility
References
1 Sun, S., Murray, C.B., Weller, D., Folks, L., Moser, A.: Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices, Science, 287, 1989 – 1992, (2000).
2 Jain, T.K., Morales, M.A., Sahoo, S.K., Leslie-Pelecky, D.L., Labhasetwar, V.: Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol. Pharm., 2, 194 – 205, (2005).
3 Bulte, J.W.: Intracellular endosomal magnetic labeling of cells, Methods Mol. Med., 124, 419 – 439, (2006).
4 Burtea, C., Laurent, S., Roch, A., Vander Elst, L., Muller, R.N.: C-MALISA (Cellular magnetic-linked immunosorbent assay), a new application of cellular ELISA for MRI, J. Inorg. Biochem., 99, 1135 – 1144, (2005).
5 Babes, L., Denizot, B., Tanguy, G., Le Jeune, J.J., Jallet, P.: Synthesis of iron oxide nanoparticles used as MRI contrast agents: A parametric study, J. Colloid Interface Sci., 2, 474 – 482, (1999).
6 Gupta, A.K., Gupta, M.: Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, J. Biomater., 26, 3995 – 4021, (2005).
7 Kim, E.H., Lee, H.S., Kwak, B.K., Kim, B.K.: Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent, J. Magn. Magn. Mater., 289, 328 – 330, (2005).
8 Mayo, J.T., Yavuz, C., Yean, S., Cong, L., Shipley, H., Yu, W., Falkner, J., Kan, A., Tomson, M., Colvin, V.: The effect of nanocrystalline magnetite size on arsenic removal, Sci. Technol. Adv. Mater., 8, 71 – 75, (2007).
9 Lim, S., Woo, E., Lee, H., Lee, C.: Synthesis of magnetite-mesoporous silica composites as adsorbents for desulfurization from natural gas, Appl. Cat. B: Env., 85, 71 – 76, (2008).
10 Gupta, A.K., Wells, S.: Surface-modified superparamagnetic nanoparticles for drug delivery: Preparation, characterization, and cytotoxicity studies, IEEE Trans. Nanobiosci., 3, 66, (2004).
11 Tsai, Z.T., Wang, J.F., Kuo, H.Y., Shen, C.R., Wang, J.J., Yen, T.C.: In situ preparation of high relaxivity iron oxide nanoparticles by coating with chitosan: A potential MRI contrast agent useful for cell tracking, J. Magn. Magn. Mater., 322, 208 – 213, (2010).
12 Illés, E., Tombácz, E.: The role of variable surface charge and surface complexation in the adsorption of humic acid on magnetite, J. Colloids Surf. A., 230, 99 – 109, (2003).
13 Zhang, X.L., Niu, H.Y., Zhang, S.X., Cai, Y.Q.; Preparation of a chitosan-coated C18-functionalized magnetite nanoparticle sorbent for extraction of phthalate ester compounds from environmental water samples, J. Anal. Bioanal. Chem., 397, 791 – 798, (2010).
14 Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., Muller, R.N.: Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, J. Chem. Rev., 108, 2064 – 2110, (2008).
15 Guo, S., Li, D., Zhang, L., Li, J., Wang, E.: Monodisperse mesoporous superparamagnetic single-crystal magnetite nanoparticles for drug delivery, Biomater., 30, 1881 – 1889, (2009).
16 Gupta, A.K., Curtis, A.S.G.: Lactoferrin and ceruloplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors, Biomater., 25, 3029 – 3040, (2004).
17 Jain, T.K., Morales, M.A., Sahoo, S.K., Leslie, D.L., Labhasetwar, V.: Iron oxide nanoparticles for sustained delivery of anticancer agents, Molec. Pharm., 2, 194 – 205, (2005).
18 Liu, S., Wei, X., Chu, M., Peng, J., Xu, Y.: Synthesis and characterization of iron oxide/polymer composite nanoparticles with pendent functional groups, J. Colloids Surfaces B: Biointerfaces, 51, 101 – 106, (2006).
19 Tran, H.V., Tran, L.D., Nguyen, T.N.: Preparation of chitosan/magnetite composite beads and their application for removal of Pb(II) and Ni(II) from aqueous solution, Mater. Sci. Eng. C., 30, 304 – 310, (2010).
20 Shariati, S., Faraji, M., Yamini, Y., Rajabi, A.: Fe3O4 magnetic nanoparticles modified with sodium dodecyl sulfate for removal of safranin O dye from aqueous solutions, Desalination, 270, 160 – 165, (2011).
21 Hong, R.Y., Li, J.H., Qu, J.M., Chen, L.I., Li, H.Z.: Preparation and characterization of magnetite/dextran nanocomposite used as a precursor of magnetic fluid, Chem. Eng. J., 150, 572 – 80, (2009)
22 Pardoe, H., Chua-anusorn, W., St. Pierre, T.G., Dobson, J.: Structural and magnetic properties of nanoscale iron oxide particles synthesized in the presence of dextran or polyvinyl alcohol, J. Mag. Mag. Mater., 225, 41 – 46, (2001).
23 Zhai, Y., Liu, F., Zhang, Q., Gao, G.: Synthesis of magnetite nanoparticles aqueous dispersions in an ionic liquid containing acrylic acid anion, Coll. Surf. A., 332, 98 – 102, (2009).
24 Kimata, M., Nakagawa, D., Hasegawa, M.: Preparation of monodisperse magnetic particles by hydrolysis of iron alkoxide, Powder Technol., 132, 112 – 118, (2003).
25 Alvarez, G.S., Muhammed, M., Zagorodni, A.A.: Novel flow injection synthesis of iron oxide nanoparticles with narrow size distribution, Chem. Eng. Sci., 61, 4625 – 4633, (2006).
26 Basak, S., Chen, D.-R., Biswas, P.: Electrospray of ionic precursor solutions to synthesize iron oxide nanoparticles: Modified scaling law, Chem. Eng. Sci., 62, 1263 – 1268, (2007).
27 El-kharrag, R., Amin, A., Greish, Y.E.: Low-temperature synthesis of mesoporous magnetite nanoparticles, Ceram. Int., submitted.
28 Atlas of Electrochemical Equilibria in Aqueous Solutions, Marcel Pourbaix, NACE International, USA, (1974).
29 Dobson, K.D., Roddick-Lanzilotta, A.D., McQuillan, A.J.: An in situ infrared spectroscopic investigation of adsorption of sodium dodecylsulfate and of certyltrumethylammonium bromide surfactants to TiO2, ZrO2, Al2O3, and Ta2O3 particle films from aqueous solutions, Vib. Spec., 24, 287 – 295, (2000)
30 Keyhanian, F., Shariati, S., Faraji, M., Hesabi, M.: Magnetite nanoparticles with surface modification for removal of methyl violet from aqueous solutions, Arab. J. Chem., (2011) in press.
31 Faraji, M., Yamini, Y., Rezaee, M.: Extraction of trace amounts of mercury with sodium dodecyl sulfate-coated magnetite nanoparticles and its determination by flow injection inductively coupled plasma-optical emission spectrometry, Talanta, 81, 831 – 836, (2010).
32 Zheng, W., Gao, F., Gu, H.; Magnetic polymer nanospheres with high and uniform magnetite content, J. Mag. Mag. Mater., 288, 403 – 410, (2005).
33 Rouquerol, F., Sing, K.: Adsorption by powders and porous solids: Principles, methodology and applications, Academic Press, UK, (1999).
34 Chen, R., Zhi, C., Yang, H., Bando, Y., Zhang, Z., Sugiur, N., Golberg, D.: Arsenic (V) adsorption on Fe3O4 nanoparticle-coated boron nitride nanotubes, J. Colloid and Interface Sci., 359, 261 – 268, (2011).
35 Sahoo, Y., Pizem, H., Fried, T., Golodnitsky, D., Burstein, L., Sukenik, C.N., Markovich, G.: Alkyl phosphonate/phosphate coating on magnetite nanoparticles: a comparison with fatty acids, Langmuir, 17, 7907, (2001).
36 Blum, P.: Physical Properties Handbook, Chapter 4: Magnetic susceptibility, November, (1997).
37 Si, S., Kotal, A., Mandal, T.K., Giri, S., Nakamura, H., Kohara, T.: Size-controlled synthesis of magnetite nanoparticles in the presence of polyelectrolytes, J. Chem. Mater., 16, 3489 – 3496, (2004).
38 Ma, Z., Liu, H.: Synthesis and surface modification of magnetic particles for application in biotechnology and biomedicine, J. China Particuology, 5, 1 – 10, (2007).
Copyright
Göller Verlag GmbH