Articles
All articles | Recent articles
Electrical and Thermal Properties of Ti3AlC2 at High Temperature
X.-K. Qian1, Y.-B. Li2, X.-D. He2, Y.-X. Chen1, S.-N. Yun1
1 School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, P.R. China
2 Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, P.R. China
received April 20, 2011, received in revised form May 27, 2011, accepted June 7, 2011
Vol. 2, No. 3, Pages 155-158 DOI: 10.4416/JCST2011-00018
Abstract
In this paper, we report on the electrical and thermal properties of predominantly single-phase Ti3AlC2 ceramics (96.7 wt%) as a function of temperature. The results show that Ti3AlC2 is a good electrical and thermal conductor at high temperature. From 300 to 1173 K, the electrical resistivity of Ti3AlC2 increases linearly from 3.4 × 10-5 to which indicates that Ti3AlC2 ceramic is a metallic conductor. In the 473 to 1473 K temperature range, the coefficient of thermal expansion of Ti3AlC2 yields an average value of 9.3 × 10-6 K-1, which is comparable with the coefficients of Ti2AlC and Ti3SiC2. The thermal conductivity increases from 22.6 to 26.4 W·m-1·K-1 with rising temperature from 473 to 1473 K. It is found that the electronic contribution to the thermal conductivity is the dominant mechanism. The molar heat capacity of Ti3AlC2 is 138.6 J·mol-1·K-1 at 473 K and extrapolates to 168.5 J·mol-1·K-1 at 1473 K.
Download Full Article (PDF)
Keywords
Ceramics, thermal conductivity, thermal expansion, electrical properties
References
1 Barsoum, M.W.: The MN+1AXN phases: A new class of solids; thermodynamically stable nanolaminates, Prog. Solid State Ch., 28, 201 – 281, (2000).
2 Tzenov, N.V., Barsoum, M.W.: Synthesis and characterization of Ti3AlC2, J. Am. Ceram. Soc., 83, 825 – 832, (2000).
3 Lin, Z.J., Zhuo, M.J., Zhou, Y.C., Li, M.S., Wang, J.Y.: Microstructural characterization of layered ternary Ti2AlC, Acta Mater., 54, 1009 – 1015, (2006).
4 Yeh, C.L., Kuo, C.W., Chu, Y.C.: Formation of Ti3AlC2/Al2O3 and Ti2AlC/Al2O3 composites by combustion synthesis in Ti-A-C-TiO2 systems, J. Alloy Compd., 494, 132 – 136, (2010).
5 Wang, X.H., Zhou, Y.C.: Oxidation behavior of Ti3AlC2 at 1000 – 1400 °C in air, Corros. Sci., 45, 891 – 907, (2003).
6 Qian, X.K., Li, Y.B., Sun, Y., He, X.D., Zhu, C.C.: Cyclic oxidation behavior of TiC/Ti3AlC2 composites at 550 – 950 °C in air, J. Alloy Compd., 491, 386 – 390, (2010).
7 Lin, Z.J., Zhuo, M.J., Zhou, Y.C., Li, M.S., Wang, J.Y.: Interfacial microstructure of Ti3AlC2 and Al2O3 oxide scale, Scripta Mater., 54, 1815 – 1820, (2006).
8 Qian, X.K., He, X.D., Li, Y.B., Li, H., Xu, D.L.: Cyclic oxidation of Ti3AlC2 at 1000 – 1300 °C in air, Corros. Sci., 53, 290 – 295, (2011).
9 Lopacinski, M., Puszynski, J., Lis, J.: Synthesis of ternary titanium aluminum carbides using self-propagating high-temperature synthesis technique, J. Am. Ceram. Soc., 84, 3051 – 3053, (2001).
10 Zhu, C.C., Qian, X.K., He, X.D., Xian, H.Z.: Combustion synthesis and thermal stability of Ti3AlC2, Rare Metal Mat. Eng., 38, 86 – 89, (2009).
11 Wang, X.H., Zhou, Y.C.: Solid-liquid reaction synthesis of layered machinable Ti3AlC2 ceramic, J. Mater. Chem., 12, 455 – 460, (2002).
12 Bao, Y.W., Wang, X.H., Zhang, H.B., Zhou, Y.C.: Thermal shock behavior of Ti3AlC2 from between 200 °C and 1300 °C, J. Eur. Ceram. Soc., 25, 3367 – 3374, (2005).
13 Wang, X.H., Zhou, Y.C.: Microstructure and properties of Ti3AlC2 prepared by the solid-liquid reaction synthesis and simultaneous in-situ hot pressing process, Acta Mater., 50, 3141 – 3149, (2002).
14 Ho, J.C., Hamdeh, H.H., Barsoum, M.W., El-Raghy, T.: Low-temperature heat capacities of Ti3Al1.1C1.8, Ti4AlN3, and Ti3SiC2, J. Appl. Phys., 86, 3609, (1999).
15 Wang, C.A., Zhou, A.G., Qi, L., Huang, Y.: Quantitative phase analysis in the ti-al-c ternary system by x-ray diffraction, Powder Diffr., 20, 218 – 223, (2005).
16 Barsoum, M.W., Salama, I., El-Raghy, T., Golczewski, J., Porter, W.D., Wang, H., Seifert, H.J., Aldinger, F.: Thermal and electrical properties of Nb2AlC, (Ti, Nb)2AlC and Ti2AlC, Metall. Mater. Trans. A., 33, 2775 – 2779, (2002).
17 Barsoum, M.W., El-Raghy, T.: Synthesis and characterization of a remarkable ceramic: Ti3SiC2, J. Am. Ceram. Soc., 79, 1953 – 1956, (1996).
18 Barsoum, M.W., El-Raghy, T., Rawn, C.J., Porter, W.D., Wang, H., Payzant, E.A., Hubbard, C.R.: Thermal properties of Ti3SiC2, J. Phys. Chem. Solids, 60, 429 – 439, (1999).
19 Barsoum, M.W., Golczewski, J., Seifert, H.J., Aldinger, F.: Fabrication and electrical and thermal properties of Ti2InC, Hf2InC and (Ti,Hf)2InC, J. Alloy. Compd., 340, 173 – 179, (2002).
Copyright
Göller Verlag GmbH