Articles
All articles | Recent articles
Effect of Mechanical Milling and Sintering Parameters on the Mechanical Properties of SiC-ZrO2
L. Anggraini1, R. Yamamoto1, H. Fujiwara2, K. Ameyama3
1 Graduate School of Science and Engineering, Ritsumeikan University, 1-1-1 Nojihigashi Kusatsu, Shiga 525 – 8577, Japan
2 Faculty of Science and Engineering, Doshisha University, 1-3 Miyakodani Tatara Kyotanabe, Kyoto 610 – 0394, Japan
3 Faculty of Science and Engineering, Ritsumeikan University, 1-1-1 Nojihigashi Kusatsu, Shiga 525 – 8577, Japan
received March 31, 2011, received in revised form May 6, 2011, accepted June 3, 2011
Vol. 2, No. 3, Pages 139-146 DOI: 10.4416/JCST2011-00017
Abstract
Silicon carbide with 50 mass% zirconia ceramic matrix composites were processed by mechanical milling (MM) followed by spark plasma sintering (SPS). By controlling the parameters of MM and SPS, an ultra-fine ZrO2 grain was homogeneously dispersed on the surface of a fine SiC powder, forming a network microstructure. The mechanical properties and the densification behavior of the SiC-ZrO2 composites were investigated. The effects of the milling time on the microstructure and on the mechanical properties of the composite are discussed. The results indicate that the composite mechanically milled for 40 hours and sintered at 1773 K had the highest relative density of 98 %, along with a flexural strength of 1128 MPa and a fracture toughness of 10.7 MPa·m1/2. These superior mechanical properties were influenced by the microstructure characteristics such as the homogeneous particle dispersion. Thus, the network microstructure can be considered a remarkable design tool for improving the mechanical properties of SiC-ZrO2, as well as other ceramic composite materials.
Download Full Article (PDF)
Keywords
Mechanical milling, spark plasma sintering, SiC-ZrO2, microstructure, mechanical properties
References
1 Maitre, A., Vande Put, A., Laval, J.P., Valette, S., Trolliard, G.: Role of boron on the spark plasma sintering of an α-SiC powder, J. Eur. Ceram. Soc., 28, 1881 – 1890, (2008).
2 Singh, M., Salem, J.A.: Mechanical properties and microstructure of biomorphic silicon carbide fabricated from wood precursors, J. Eur. Ceram. Soc., 22, 2709 – 2717, (2002).
3 Huang, Q.-W., Zhu, L.-H.: High-temperature strength and toughness behaviours for reaction-bonded SiC ceramic below 1400 °C, Mater. Lett., 59, 1732 – 1735, (2005).
4 Sanchez-Gonzalez, J., Ortiz, A.L., Guiberteau, F., Pascual, C.: Complex impedance spectroscopy study of a liquid-phase-sintered α-SiC ceramic, J. Eur. Ceram. Soc., 27, 3935 – 3939, (2007).
5 Varela-Feria, F.M., Martinez-Fernandez, J., Arellano-Lopez, A.R., Singh, M.: Low density biomorphic silicon Carbide: Microstructure and mechanical properties, J. Eur. Ceram. Soc., 22, 2719 – 2725, (2002).
6 Kim, Y.-W., Mitomo, M., Emoto, H.: Effect of initial α-phase content on microstructure and mechanical properties of sintered silicon carbide, J. Am. Ceram. Soc., 81, 3136 – 3140, (1998).
7 Claussen, N.: Fracture toughness of Al2O3 with an unstabilized ZrO2 dispersed phase, J. Am. Ceram. Soc., 59, 49 – 51, (1976).
8 Dougherty, S.E., Nieh, T.G., Wadsworth, J.: Mechanical properties of a 20 vol% SiC whisker-reinforced, yttria-stabilized, tetragonal zirconia composite at elevated temperature, J. Mater. Res., 10, 113 – 118, (1995).
9 Claussen, N., Weisskopf, K.-L., Ruhle, M.: Tetragonal zirconia polycrystals reinforced with SiC whiskers, J. Am. Ceram. Soc., 69, 288 – 292, (1986).
10 Miao, X., Rainforth, W.M., Lee, W.E.: Dense zirconia-siC platelet composites made by pressureless sintering and hot pressing, J. Eur. Ceram. Soc., 93, 913 – 920, (1997).
11 Lee, H.L., Lee, H.M.: Effect of SiC on the mechanical properties of 3Y-TZP/SiC composites, J. Mater. Sci. Let., 13, 974 – 976, (1994).
12 Bamba, N., Choa, Y.-H., Sekino, T., Niihara, K.: Microstructure and mechanical properties of yttria stabilized Zirconia/Silicon carbide nanocomposites, J. Eur. Ceram. Soc., 18, 693 – 699, (1998).
13 Dutta, S., Buzek, B.: Microstructure, strength, and oxidation of a 10 wt% Zyttrite-Si3N4 ceramic, J. Am. Ceram. Soc., 67, 89 – 92, (1984).
14 Claussen, N., Jahn, J.: Mechanical properties of sintered and hot-pressed Si3N4-ZrO2 composites, J. Am. Ceram. Soc., 61, 94 – 95, (1978).
15 Cain, M.G., Lewis, M.H.: Microstructure and fracture toughness of hot-pressed zirconia toughened sialon, J. Am. Ceram. Soc., 76, 1401 – 1408, (1993).
16 Lee, B.T., Hiraga, K., Shindo, D.: Microstructure of pressureless-sintered Al2O3-24 vol% ZrO2 composite studied by high-resolution electron microscopy, J. Mater. Sci., 29, 959 – 964, (1994).
17 Terao, K., Miyamoto, Y., Koizumi, M.: Characteristics of ZrO2-dispersed Si3N4 without additives fabricated by hot isostatic pressing, J. Am. Ceram. Soc., 71, C-167 – C-169, (1988).
18 Anstis, G.R., Chantikul, P., Lawn, B.R., Marshall, D.B.: A critical evaluation of indentation techniques for measuring fracture toughness: I, Direct crack measurements, J. Am. Ceram. Soc., 64, 533 – 538, (1981).
19 Zhang, Z.-H., Wang, F.-C., Luo, J., Lee, S.-K., Wang, L.: Processing and characterization of fine-grained monolithic SiC ceramic synthesized by spark plasma sintering, Mater. Sci. Eng. A., 527, 2099 – 2103, (2010).
20 Tokita, M., Tamari, N., Takeuchi, T., Makino, Y.: Consolidation behavior and mechanical properties of SiC with Al2O3 and Yb2O3 consolidated by SPS, J. Jpn. Soc. Powder Powder Metall., 56, 788 – 195, (2009).
21 Tokita, M.: Mechanism of spark plasma sintering. In: Sumitomo Coal Mining Company, Ltd.
22 Cheloui, H., Zhang, Z., Shen, X., Wang, F., Lee, S.: Microstructure and mechanical properties of TiB-TiB2 fabricated by spark plasma sintering, Mater. Sci. Eng. A., 528, 3849 – 3853, (2011).
23 Mayo, M.J.: Synthesis and applications of nanocrystalline ceramics, Mater. Design, 14, 323 – 329, (1993).
24 Ring, T.A.: Fundamentals of ceramic powder processing and synthesis. Academic Press, Inc., California, (1995).
Copyright
Göller Verlag GmbH