Articles
All articles | Recent articles
Heat Transfer in Transparent YAG Nanoceramic
J. Mucha1, A. Chuchmała2, D. Hreniak1, A. Jeżowski1, W. Strek1
1 Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50 – 950 Wroclaw, Poland;
2 Institute of Electrical Engineering Fundamentals (I7), Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50 – 370 Wroclaw, Poland;
received March 19, 2011, received in revised form May 6, 2011, accepted June 7, 2011
Vol. 2, No. 3, Pages 179-182 DOI: 10.4416/JCST2011-00014
Abstract
Thermal conductivity in transparent YAG nanoceramic was measured with the LTHP method in the temperature range 4 – 300 K. It was found that the thermal conductivity of nanoceramics with an average grains size of 16 nm was much lower compared to YAG crystal and polycrystalline ceramics composed of micro-size grains. The results were discussed in terms of the Kapitza resistance model. At about 200 K, Kapitza resistance becomes negative, which indicates a connection with apparent negative thermal conductivity.
Download Full Article (PDF)
Keywords
Ceramics, amorphous materials, nanostructures, thermal conductivity, YAG
References
1 Klemens, P.G.: Thermal resistance due to grain boundaries. In: Thermal Conductivity, 21, Edited by Cremers C. J. and Fine H. A., Plenum Press, New York, USA, (1990).
2 Salamon, M.B., Jaime, M.: The physics of manganites: Structure and transport, Rev. Mod. Phys., 73, 583 – 628, (2001).
3 Watari, K., Nakano, H., Sato, K., Urabe, K., Ishizaki, K., Cao, S., Mori, K.: Effect of grain boundaries on thermal conductivity of silicon carbide ceramic at 5 to 1300 K, J. Am. Ceram. Soc., 86, 1812 – 1814, (2003).
4 Jezowski, A., Mucha, J., Pazik, R., Strek, W.: Influence of crystallite size on the thermal conductivity in BaTiO3 nanoceramics, Appl. Phys. Lett., 90, 114104, (2007).
5 Kaminskii, A.A.: Laser crystals, Springer, Berlin, Heidelberg, New York, (1981).
6 Ikesue, A., Furusato, I., Kamata, K.: Fabrication of polycrystal line, transparent YAG ceramics by a solid-state reaction method, J. Am. Ceram. Soc., 78, 225 – 228, (1995).
7 Lu, J., Prahu, M., Xu, J., Ueda, K., Yagi, H., Yanagitani, T., Kaminskii, A.A.: Highly efficient 2 % Nd:Yttrium aluminum garnet ceramic laser, Appl. Phys. Lett., 77, 3707 – 3709, (2000).
8 Lu, J., Murai, T., Takaichi, K., Uematsu, T., Misawa, K., Prabhu, M., Xu, J., Ueda, K., Yagi, H., Yanagitani, T., Kaminskii, A.A., Kudryashov, A.: 72 W Nd:Y3Al5O12 ceramic laser; Appl. Phys. Lett., 78, 3586 – 3588, (2001).
9 Yagi, H., Yanagitani, T., Takaichi, K., Ueda, K., Kaminskii, A.A.: Characterizations and laser performances of highly transparent Nd3+:Y3Al5O12 laser ceramics, Opt. Mater., 29, 1258 – 1262, (2007).
10 Nitin, P.P., Klemens, P.G.: Low thermal conductivity in garnets, J. Am. Ceram. Soc., 80, 1018 – 1020, (1997).
11 Samsonov, G.V.: The Oxide Handbook, 2nd edition., IFI/Plenum, New York, (1982).
12 Lackey, W.J., Stinton, D.P., Cerny, G.A., Schaffhauser, A.C., Fehrenbacher, L.L.: Ceramic coatings for advanced heat Engines – a review and projection, Adv. Ceram. Mater., 2, 24 – 30, (1987).
13 Pechini, M.P.: Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor, US Patent 3 330 697, (1967).
14 Fedyk, R., Hreniak, D., Łojkowski, W., Strek, W., Matysiak, H., Grzanka, E., Gierlotka, S., Mazur, P.: Method of preparation and structural properties of transparent YAG nanoceramics, Opt. Mat., 29, 1252 – 1257, (2007).
15 Scherrer, P., Göttinger Nachrichten Gesell. 2, 98 – 100, (1918).
16 Jezowski, A., Mucha, J., Pompe, G.: Thermal conductivity of the amorphous alloy Fe40Ni40P14B6 between 80 and 300 K, J. Phys. D: Appl. Phys., 20, 1500 – 1506, (1987).
17 Mucha, J., Dorbolo, S., Bougrine, H., Durczewski, K., Ausloos, M.: Analysis of experimental conditions for simultaneous measurements of transport and magnetotransport coefficients of high temperature superconductors, Cryogenics, 44, 145 – 149, (2004).
18 Lukowiak, A., Wiglusz, R.J., Maczka, M., Gluchowski, P., Strek, W.: IR and raman spectroscopy study of YAG nanoceramics, Chem. Phys. Lett., 494, 279 – 283, (2010).
19 Amorphous Solids, Low-Temperature Properties, edited by Phillips, W.A., Springer Verlag Berlin, Heidelberg, New York (1981).
20 P.L. Kapitza, Zh. Eksp. Teor. Fiz. 11 (1941) 1 [English transl.: J. Phys. U.S.S.R. 4 (1941) 181].
21 Nan, C.W., Birringer, R.: Determining the kapitza resistance and the thermal Conductivity of Polycrystals: A simple model, Phys. Rev. B, 57, 8264 – 8268, (1998).
22 Yang, H.S., Bai, G.R., Thompson, L.J., Eastman, J.A.: Interfacial thermal resistance in nanocrystalline yttria-stabilized zirconia, Acta Mater., 50, 2309 – 2317, (2002).
23 Pollack G. L.: Kapitza resistance, Rev. Mod. Phys., 41, 48 – 81, (1969)
24 Callaway, J.: Model for lattice thermal conductivity at low temperatures, Phys. Rev., 113, 1046 – 1051, (1959).
25 Numazawa, T., Arai, O., Hu, Q., Noda, T.: Thermal conductivity measurements for evaluation of crystal perfection at low temperatures, Meas. Sci. Technol., 12, 2089 – 2094, (2001).
26 Sato, Y., Akiyama, J., Taira, T.: Effects of rare-earth doping on thermal conductivity in Y3Al5O12 crystals, Opt. Mater., 31, 720 – 724, (2009).
Copyright
Göller Verlag GmbH