• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Heat Transfer in Transparent YAG Nanoceramic

J. Mucha1, A. Chuchmała2, D. Hreniak1, A. Jeżowski1, W. Strek1

1 Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50 – 950 Wroclaw, Poland;
2 Institute of Electrical Engineering Fundamentals (I7), Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50 – 370 Wroclaw, Poland;

received March 19, 2011, received in revised form May 6, 2011, accepted June 7, 2011

Vol. 2, No. 3, Pages 179-182   DOI: 10.4416/JCST2011-00014

Abstract

Thermal conductivity in transparent YAG nanoceramic was measured with the LTHP method in the temperature range 4 – 300 K. It was found that the thermal conductivity of nanoceramics with an average grains size of 16 nm was much lower compared to YAG crystal and polycrystalline ceramics composed of micro-size grains. The results were discussed in terms of the Kapitza resistance model. At about 200 K, Kapitza resistance becomes negative, which indicates a connection with apparent negative thermal conductivity.

Download Full Article (PDF)

Keywords

Ceramics, amorphous materials, nanostructures, thermal conductivity, YAG

References

1 Klemens, P.G.: Thermal resistance due to grain boundaries. In: Thermal Conductivity, 21, Edited by Cremers C. J. and Fine H. A., Plenum Press, New York, USA, (1990).

2 Salamon, M.B., Jaime, M.: The physics of manganites: Structure and transport, Rev. Mod. Phys., 73, 583 – 628, (2001).

3 Watari, K., Nakano, H., Sato, K., Urabe, K., Ishizaki, K., Cao, S., Mori, K.: Effect of grain boundaries on thermal conductivity of silicon carbide ceramic at 5 to 1300 K, J. Am. Ceram. Soc., 86, 1812 – 1814, (2003).

4 Jezowski, A., Mucha, J., Pazik, R., Strek, W.: Influence of crystallite size on the thermal conductivity in BaTiO3 nanoceramics, Appl. Phys. Lett., 90, 114104, (2007).

5 Kaminskii, A.A.: Laser crystals, Springer, Berlin, Heidelberg, New York, (1981).

6 Ikesue, A., Furusato, I., Kamata, K.: Fabrication of polycrystal line, transparent YAG ceramics by a solid-state reaction method, J. Am. Ceram. Soc., 78, 225 – 228, (1995).

7 Lu, J., Prahu, M., Xu, J., Ueda, K., Yagi, H., Yanagitani, T., Kaminskii, A.A.: Highly efficient 2 % Nd:Yttrium aluminum garnet ceramic laser, Appl. Phys. Lett., 77, 3707 – 3709, (2000).

8 Lu, J., Murai, T., Takaichi, K., Uematsu, T., Misawa, K., Prabhu, M., Xu, J., Ueda, K., Yagi, H., Yanagitani, T., Kaminskii, A.A., Kudryashov, A.: 72 W Nd:Y3Al5O12 ceramic laser; Appl. Phys. Lett., 78, 3586 – 3588, (2001).

9 Yagi, H., Yanagitani, T., Takaichi, K., Ueda, K., Kaminskii, A.A.: Characterizations and laser performances of highly transparent Nd3+:Y3Al5O12 laser ceramics, Opt. Mater., 29, 1258 – 1262, (2007).

10 Nitin, P.P., Klemens, P.G.: Low thermal conductivity in garnets, J. Am. Ceram. Soc., 80, 1018 – 1020, (1997).

11 Samsonov, G.V.: The Oxide Handbook, 2nd edition., IFI/Plenum, New York, (1982).

12 Lackey, W.J., Stinton, D.P., Cerny, G.A., Schaffhauser, A.C., Fehrenbacher, L.L.: Ceramic coatings for advanced heat Engines – a review and projection, Adv. Ceram. Mater., 2, 24 – 30, (1987).

13 Pechini, M.P.: Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor, US Patent 3 330 697, (1967).

14 Fedyk, R., Hreniak, D., Łojkowski, W., Strek, W., Matysiak, H., Grzanka, E., Gierlotka, S., Mazur, P.: Method of preparation and structural properties of transparent YAG nanoceramics, Opt. Mat., 29, 1252 – 1257, (2007).

15 Scherrer, P., Göttinger Nachrichten Gesell. 2, 98 – 100, (1918).

16 Jezowski, A., Mucha, J., Pompe, G.: Thermal conductivity of the amorphous alloy Fe40Ni40P14B6 between 80 and 300 K, J. Phys. D: Appl. Phys., 20, 1500 – 1506, (1987).

17 Mucha, J., Dorbolo, S., Bougrine, H., Durczewski, K., Ausloos, M.: Analysis of experimental conditions for simultaneous measurements of transport and magnetotransport coefficients of high temperature superconductors, Cryogenics, 44, 145 – 149, (2004).

18 Lukowiak, A., Wiglusz, R.J., Maczka, M., Gluchowski, P., Strek, W.: IR and raman spectroscopy study of YAG nanoceramics, Chem. Phys. Lett., 494, 279 – 283, (2010).

19 Amorphous Solids, Low-Temperature Properties, edited by Phillips, W.A., Springer Verlag Berlin, Heidelberg, New York (1981).

20 P.L. Kapitza, Zh. Eksp. Teor. Fiz. 11 (1941) 1 [English transl.: J. Phys. U.S.S.R. 4 (1941) 181].

21 Nan, C.W., Birringer, R.: Determining the kapitza resistance and the thermal Conductivity of Polycrystals: A simple model, Phys. Rev. B, 57, 8264 – 8268, (1998).

22 Yang, H.S., Bai, G.R., Thompson, L.J., Eastman, J.A.: Interfacial thermal resistance in nanocrystalline yttria-stabilized zirconia, Acta Mater., 50, 2309 – 2317, (2002).

23 Pollack G. L.: Kapitza resistance, Rev. Mod. Phys., 41, 48 – 81, (1969)

24 Callaway, J.: Model for lattice thermal conductivity at low temperatures, Phys. Rev., 113, 1046 – 1051, (1959).

25 Numazawa, T., Arai, O., Hu, Q., Noda, T.: Thermal conductivity measurements for evaluation of crystal perfection at low temperatures, Meas. Sci. Technol., 12, 2089 – 2094, (2001).

26 Sato, Y., Akiyama, J., Taira, T.: Effects of rare-earth doping on thermal conductivity in Y3Al5O12 crystals, Opt. Mater., 31, 720 – 724, (2009).

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2025 Göller Verlag GmbH