• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Sintering Behaviour of Multilayer Hydroxyapatite Laminates

E. Hahn1, J. Hum1, J. Will1, K. Zuo2, D. Jiang2, P. Greil1

1 University of Erlangen-Nuremberg, Department of Materials Science (Glass and Ceramics) Martensstr. 5, D-91058 Erlangen, Germany
2 Shanghai Institute of Ceramics, Chinese Academy of Sciences, The State Key Lab of High Performance Ceramics and Superfine Structures, 1295 Ding-Xi Rd, Shanghai 200050, China

received September 2, 2010, received in revised form October 20, 2010, accepted October 21, 2010

Vol. 2, No. 1, Pages 61-68   DOI: 10.4416/JCST2010-00034

Abstract

Aqueous tape-cast slurries of hydroxyapatite with a solid loading of 32 vol% were prepared from various fractions of aggregated (mean particle size 4.7 – 5.6 μm) and dispersed powder (mean particle size 0.17 – 0.29 μm). Multilayer laminates were prepared and the shrinkage and density of the laminates sintered at 1250 °C were measured. While fractional density in the green laminates remains almost constant at 0.52, a pronounced increase in fractional sintered density from 0.96 to > 0.99 was observed with decreasing fraction of aggregated powder. Residual pore size and pore number density were reduced from 0.58 μm to 0.48 μm and 0.049 pores/μm2 to 0.019 pores/μm2, respectively. The multilayer laminates attained a mean bending strength of 118 ± 10 MPa measured with the bi-axial bending test. An osteosynthesis plate design was fabricated for demonstration of the potential of sintered multilayer laminates.

Download Full Article (PDF)

Keywords

Hydroxyapatite, laminate sintering, aggregated and dispersed powder

References

1 de Groot, K., Klein, C.P.A.T., Wolke, J.G.C., de Bliek-Hogervorst, J.M.A.: CRC Handbook of Bioactive Calcium Phosphates, CRC Boca Raton, FL, 2, 3, (1990). 3.

2 Dorozhkin, S.V.: Calciumorthophosphates in Nature, Biology and Medicine, Materials, 2, 399-498, (2009).

3 Hench, L.L.: Bioceramics, J. Amer. Ceram. Soc., 81, 1705-1728, (1998).

4 LeGeros, R.Z., LeGeros, J.P.: Dense Hydroxyapatite, in An Introduction to Bioceramics, editors L.L. Hench, J. Wilson, World Scientific Publ., Singapore,139-180, (1999).

5 Jarcho, M., Bolen, C. H., Thomas, M. B., Bobick, J., Kay, J. F., Doremus, R. H.: Hydroxylapatite Synthesis and Characterization in Dense Form, J.Mater.Res., 11 [11], 2027-2035, (1976).

6 de With, G., van Dijk, H. J. A., Hattu, N., Prijs, K.: Preparation, Microstructure and Mechanical Properties of Dense Polycrystalline Hydroxyapatite, J.Mater.Sci., 16 [6], 1592-1598, (1981).

7 Snyders, R., Music, D., Sigumonrong, D., Schlenberger, B., Jensen, J., Schneider, J.M.: Experimental and ab initio study of the mechanical properties of hydroxyapatite, Appl. Phys.Lett., 90, 193902, (2007).

8 Jarcho, M.: Calcium phosphate ceramics as hard tissue prosthetics, Clin.Orthop., 157, 259-278, (1981).

9 Zhang, X., Gubbels, G.H.M., Terpstra, R.A., Metselaar, R.: Toughening of Calcium Hydroxyapatite with Silver Particles, J.Mat.Sci. 32, 235-243, (1997).

10 Gautier, S., Champion, E., Bernache-Assollant, D.: Toughening characterization in alumina platelet-hydroxyapatite matrix composites, J.Mat.Sci.Mat.Medic. 10, 533-540, (1999).

11 Cioni, B., Lazzeri, A., Gallone, G., Levita, G.: Synthesis of Bioactive Hydroxyapatite-Zirconia Toughened Composites for Bone Replacement, in Adv.Sci.Techn. 57, Trans Tech Publ. CH, 31-36, (2008).

12 White, A.A., Best, S., Kinloch, I.A.: Hydroxapatite – Carbon Nanotube Composites for Biomedical Applications: A Review, Int.J.Appl.Ceram.Techn., 4, 1-13 (2007).

13 Dorner-Reisel, A., Müller, E., Tomandl, G.: Short Fiber-Reinforced Hydroxyapatite-Bioceramics, Adv.Eng.Mat., 6, 572-577, (2004).

14 Fanovich, M. A., Porto Lopez, J. M.: Influence of temperature and additives on the microstructure and sintering behavior of hydroxyapatites with different Ca/P ratios, J. Mat.Sci.Mat.Med., 9, 53-60, (1998).

15 Wang, P.E., Chaki, T.K.: Sintering behaviour and mechanical properties of hydroxyapatite and dicalcium phosphate, J. Mat. Sci.:Mat. Med., 4, 150-158, (1993).

16 Layrolle, P., Ito, A., Tateishi, T.: Sol-Gel Synthesis of Amorphous Calcium Phosphate Sintering into Microporous Hydroxyapatite Bioceramics, J.Amer.Ceram.Soc., 81, 1421-1428, (1998).

17 Ahn, E.S., Gleason, N.J., Nakahira, A., Ying, J.Y.: Nanostructure Processing of Hydroxyapatite Bioeramics, Nanoletters, 1, 149-153, (2001).

18 Majiling, J., Znaik, P., Palova, A., Svetik, S., Kovalik, S., Agrawal, D.K., Roy, R.: Sintering of the Ultrahigh Pressure Densified Hydroxyapatite Monolithic Xerogels, J.Mat. Res., 12, 198-202, (1997).

19 van Landuyt, P., Li, F., Keustermans, J.P., Streydio, J.M., Delannay, F.: The influence of high sintering temperature on the mechanical properties of hydroxyapatite, J.Mat.Sci. Mat.Med., 6, 8-13, (1995).

20 Zhou, J., Zhang, X., Chen, J., Zeng, S., de Groot, K.: High-temperature characteristic of synthetic hydroxyapatite, J.Mat.Sci.Mat.Med., 4, 83-85, (1993).

21 Suchanek, W., Yoshimura, M.: Processing and properties of hydroxyapatite-based bio-materials for use as hard tissue replacement implants, J.Mater.Res., 13, 94-117, (1998).

22 Wang, C.K., Ju, C.P., Chern Lin, J.H.: Effect of doped bioactive glass on structure and properties of sintered hydroxyapatite, Mat.Chem.Phys., 53, 138-149, (1998).

23 Ruys, A.J., Brandwood, A., Milthorpe, B.K., Dickson, M.R., Zeigler, K.A., Sorrell, C.C.: The effects of sintering atmosphere on the chemical compatibility of hydroxylapatite and particulate additives at 1200 °C, J. Mat. Sci. Mat. Med., 6, 297-301, (1995).

24 Kijima, T., Tsutsumi, M.: Preparation and thermal properties of dense polycrystalline oxyhydroxyapatite, J.Amer.Ceram.Soc., 62, 455-460, (1979).

25 Han, Y., Xu, K., Lu, J., Wu, Z.: The structural characteristics and mechanical behaviors of non-stoichiometric apatite coatings sintered in air atmosphere, J. Biomed. Mater. Res., 45, 198-203, (1999).

26 Groza, J.R., Dowding, R. J.: Nanoparticulate Materials Densification, Nan.St.Mat., 7, 749-768, (1996).

27 Gibson, I.R., Ke, S., Best, S.M., Bonfield, W.: Effect of powder characteristics on the sinterability of hydroxyapatite powders, J.Mat.Sci.Mat.Med., 12, 163-171, (2001).

28 Dynys, F.W., Halloran, J.W.: Influence of Aggregates on Sintering, J.Amer.Ceram.Soc., 67, 596-601, (1984).

29 Raj, R., Bordia, R.: Sintering Behaviour of Bi-Modal Powder Compacts, Acta Metall., 32, 1003-1019, (1984).

30 Evans, A.G.: Considerations of Inhomogeneity Effects in Sintering, J.Amer.Ceram.Soc., 65, 497-501, (1982).

31 Scherrer, G.W.:Viscous Sintering of a Bimodal Pore-Size Distribution, J.Amer.Ceram., Soc., 67, 709-715, (1984).

32 de With, G., van Dijk, H. J. A., Hattu, N., Prijs, K.: Preparation, microstructure and mechanical properties of dense polycristalline hydroxyapatite, J.Mat.Sci.,16, 1592-1598, (1981).

33 Kalita, S.J., Bhatt, H.A., Dhamne, A.: Effects of MgO-CaO-P2O5-Na2O-based additives on mechanical and biological properties of hydroxyapatite, J.Amer.Ceram.Soc., 89, 875-881, (2006).

34 Werner, J., Linner-Krcmer, B., Friess, W., Greil, P.: Mechanical properties and in vitro cell compatibility of hydroxyapatite ceramics with graded pore structure, Biomaterials, 23, 4285-4294, (2002).

35 Pompe, W., Worch, H., Epple, M., Friess, W., Gelinsky, M., Greil, P., Hempel, U., Scharnweber, D., Schulte, K.: Functionally graded materials for biomedical applications, Mat.Sci.Eng. A 363, 40-60, (2003).

36 Miao, X., Sun, D.: Graded/Gradient Porous Biomaterials, Materials, 3, 26-47, (2010).

37 Koh, Y.H., Kim, H.W., Kim, H.E., Halloran, J.W.: Fabrication of Microchannelled-Hydroxyapatite Bioceramic by a Coextrusion Process, J.Amer.Ceram.Soc., 5, 2578-2580, (2002).

38 Arita, I.H., Castano, V.M., Wilkinson, D.S.: Synthesis and Processing of Hydroxyapatite Ceramic Tapes with Controlled Porosity, J.Mat.Sci.Mat.Med., 6, 19-23, (1995).

39 Schindler, K., Roosen, A.: Manufacture of 3D structures by cold low pressure lamination of ceramic green tapes, J.Europ.Ceram.Soc., 29, 899-904, (2009).

40 Soltesz, U., Richter, H., Kienzler, R.: The concentric-ring test and its application for determining the surface strength of ceramics, in Mater Sci Monogr (Ceram Clin Appl), 39, 149-158, (1987).

41 Wang, P.E., Chakl, T.K.: Sintering behaviour and mechanical properties of hydroxylapatite and dicalcium phosphate, J.Mat.Sci.Mat.Med., 4, 150-158, (1993).

42 Nath, S., Biswas, K., Wang, K., Bordia, R.K, Basu, B.: Sintering, Phase Stability and Properties of Calcium Phosphate-Mullite Composites, J.Amer.Ceram.Soc., 93, 1639-1649, (2010).

43 Ramesh, S.: Grain Size-Properties Correlation in Polycrystalline Hydroxyapatite Bioceramic, Malaysian Journal of Chemistry, 3, 35-40, (2001).

44 McGeary, R.K.: Mechanical Packing of Spherical Particles, J.Amer.Ceram.Soc., 44, 513, (1961).

45 Funk, J.A., Dinger, D.R.: Predictive Process Control of Crowded Particulate Suspensions, Kluwer Academic Publ., Norwell, MA, (1994).

46 Lange, F.F., Lam, D.C.C., Sudre, O.: Powder Processing and Densification of Ceramic Composites, Mater.Res.Soc.Symp.Proc., 155, 309-318, (1989)

47 Rahaman, M.N.: Ceramic Processing, Taylor & Francis, Boca Raton, FL, (2007).

48 Bordia, R.K., Raj, R.: Analysis of Sintering of a Composite with a Glass or Ceramic Matrix, J.Amer.Ceram.Soc., 69, C 55 – C 57, (1986).

49 Scherrer, G.W.: Sintering with rigid inclusions, J.Amer.Ceram.Soc., 70, 719-725, (1987).

50 Bordia, R.K., Raj, R.: Sintering Behaviour of Ceramic Films Constrained by a Rigid Substitute, J.Amer.Ceram.Soc., 68, 287-292, (1985).

51 Ruys, A. J., Wei, M., Sorrell, C. C., Dickson, M. R., Brandwood, A., Milthorp, B.K.: Sintering effects on the strength of hydroxyapatite, Biomaterials, 16, 409-415, (1995).

52 Santos, J.D., Knowles, J.C., Reis, R.L., Monteiro, F.J., Hastings, G.W.: Microstructural Characterization of Glass-Reinforced Hydroxyapatite Composites, Biomaterials, 15, 5-10, (1994).

53 Giovan, M.N., Sines, G.: Biaxial and Uniaxial Data for Statistical Comparisons of a Ceramic's Strength, J.Amer.Ceram.Soc., 62, 510-515, (1979).

Copyright

© 2010 Göller Verlag

Acknowledgments

The authors gratefully acknowledge the financial support from the German Research Foundation (GR 961/28-1).

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2017 Göller Verlag GmbH