Articles
All articles | Recent articles
A New Bioactive Glass Composition for Bioceramic Scaffolds
Devis Bellucci, Valeria Cannillo, Antonella Sola
Dipartimento di Ingegneria dei Materiali e dell'Ambiente, Università degli Studi di Modena e Reggio Emilia, Via Vignolese 905, 41100 Modena, Italy
received April 07, 2010, received in revised form May 21, 2010, accepted July 15, 2010
Vol. 1, No. 1, Pages 33-40 DOI: 10.4416/JCST2010-00008
Abstract
Bioactive-glass-derived scaffolds are crucial in bone tissue engineering since they act as temporary templates for tissue regrowth, providing structural support to the cells in a resulting 3D architecture. However, many issues remain open with regard to their design. On the one hand, bioceramic scaffolds should be bioactive, highly porous and should possess adequate mechanical properties; on the other hand, attempts to improve the mechanical properties of the widely used 45S5 Bioglass® turn the bioactive glass itself into a glass-ceramic, with non-trivial effects on the resulting scaffold bioactivity. In this work, for the first time a new bioactive glass composition was employed to produce scaffolds for bone tissue engineering. The new glass composition can be treated at a relatively low temperature and it is characterized by a reduced tendency to crystallize compared to the 45S5 Bioglass®. Moreover, the presented scaffolds are realized with a recently developed technique described here in detail. The resulting samples are highly porous and bioactive. Additionally, they possess a resistant and at the same time permeable surface similar to a shell, which ensures good manageability.
Download Full Article (PDF)
Keywords
bioceramics, porous materials, scaffolds, glass-ceramics.
References
1 Ikada, Y., Tissue Engineering, Volume 8: Fundamentals and Applications, Academic Press (2006).
2 Salgado, A. J., Coutinho, O. P., Reis, R. L., Bone Tissue Engineering: State of the art and future trends, Macromol. Biosci. 4, 743-765 (2004).
3 Peitl, O., Canotto, E. D., Hench, L. L., Highly bioactive P2O5-Na2O-CaO-SiO2 glass-ceramics, J. Non-Crys. Solids 292, 115-126 (2001).
4 Hench, L. L., The story of Bioglass®, J. Mater. Sci: Mater. Med. 17, 967-978 (2006).
5 Yamamuro, T., Hench, L. L., Wilson, J. (Eds.), Handbook on bioactive ceramics: bioactive glasses and glass-ceramics, Vol. I. CRC Press, Boca Raton, FL (1990).
6 Hench, L. L., Bioceramics, From Concept to Clinic, J. Am. Ceram. Soc. 74(7), 1487-1510 (1991).
7 Hench, L.L., Splinter, R. J., Allen, W. C., Greenlee, T. K. , Bonding mechanisms at the interface of ceramic prosthetic materials, J. Biomed. Mater. Res. Symp. 2 (Part I): 117-141 (1971).
8 Elgayar, I., Aliev, A. E., Boccaccini , A. R., Hill, R. G., Structural analysis of bioactive glasses, J. Non-Crys. Solids 351, 173-183 (2005).
9 Lockyer, M. W. G., Holland, D., Dupree, R., NMR investigation of the structure of some bioactive and related glasses, J. Non-Crys. Solids 188, 207-219 (1995).
10 Brink, M., The influence of alkali and alkaline earths on the working range for bioactive glasses, J. Biomed. Mater. Res. 36, 109-117 (1997)
11 Kokubo, T., Takadama, H., How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials 27, 2907-2915 (2006).
12 Boccaccini, A. R., Chen, Q. Z., Lefebvre, L., Gremillard, L., Chevalier, J., Sintering, crystallization and biodegradation behaviour of Bioglass®-derived glass-ceramics, Faraday Discuss. 136, 27-44 (2007).
13 Chen, Q. Z., Thompson, I. D., Boccaccini, A. R., 45S5 Bioglass®-derived glass-ceramic scaffolds for bone tissue engineering, Biomaterials 27, 2414-2425 (2006).
14 Rezwan, K., Chen, Q. Z., Blaker, J. J., Boccaccini, A. R., Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering, Biomaterials 27, 3413-3431 (2006).
15 Karageorgiou, V., Kaplan, D., Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials 26, 5474-5491 (2005).
16 Salgado, A. J., Coutinho, O. P., Reis, R. L., Bone Tissue Engineering: State of the art and future trends, Macromol. Biosci. 4, 743-765 (2004).
17 Mastrogiacomo, M., Scaglione, S., Martinetti, R., Dolcini, L., Beltrame, F., Cancedda, R., Quarto, R., Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics, Biomaterials 27, 3230-3237 (2006).
18 Ochoa, I., Sanz-Herrera, J. A., Garcia-Aznar, J. M., Doblaré, M., Yunos, D. M., Boccaccini, A. R., Permeability evaluation of 45S5 Bioglass®-based scaffolds for bone tissue engineering, J. of Biomechanics 42, 257-260 (2009).
19 Filho, O. P., LaTorre, G. P., Hench, L. L., Effect of crystallization on apatite-layer formation of bioactive glass 45S5, J. Biomed. Mater. Res. 30, 509-514 (1996).
20 Cannillo, V., Sola, A., Potassium-based composition for a bioactive glass. Ceram. Int. 35, 3389-3393 (2009).
21 Bellucci, D., Cannillo, V., Sola, A., Shell Scaffolds: a new approach towards high strength bioceramic scaffolds for bone regeneration, Materials Letters 64, 203-206 (2010).
22 Vitale-Brovarone, C., Miola, M., Balagna, C., Verné, E., 3D-glass-ceramic scaffolds with antibacterial properties for bone grafting, Chemical Engineering Journal 137, 129-136 (2008).
23 Lopez-Esteban, S., Saiz, E., Fujino, S., Oku, T., Suganuma, K., Tomsia, A. P., Bioactive glass coatings for orthopaedic metallic implants, J. Eur. Cer. Soc. 23, 2921-2930 (2003).
24 Bretcanu, O., Samaille, C., Boccaccini, A. R., Simple methods to fabricate Bioglass®-derived glass-ceramic scaffolds exhibiting porosity gradient, J. Mater. Sci. 43, 4127-4134 (2008).
25 Gautier, O., Bouler, J. M., Aguado, E., Pilet P., Daculsi, G., Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth, Biomaterials 19, 133-139 (1998).
26 De Aza, P. N., Luklinska, Z. B., Santos, C., Guitian, F., De Aza, S., Biomaterials 24, 1437-1445 (2003).
27 Deligianni, D. D., Katsala, N. D., Koutsoukos P. G., Missirlis, Y. F., Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength, Biomaterials 22 (1), 87-96 (2001).
28 Schwarts, Z., Boyan, B. D., J. Cell. Biochem. 56, 340-347 (1994).
29 Lefebvre, L., Gremillard, L., Chevalier, J., Zenati, R., Bernache-Assolant, D., Sintering behaviour of 45S5 bioactive glass, Acta Biomaterialia 4, 1894-1903 (2008).
30 Lin, C. C., Huang, L. C., Shen, P., Na2CaSi2O6-P2O5 based bioactive glasses. Part 1: Elasticity and structure, J. Non-Crys. Solids 351 (40-42), 3195-3203 (2005).
31 Kokubo, T., Apatite formation on surfaces of ceramics, metals and polymers in body environments, Acta Mater. 46 (7), 2519-2527 (1998).
32 Kokubo, T., Kim, H. M., Kawashita, M., Novel bioactive materials with different mechanical properties, Biomaterials 24, 2161-2175 (2003).
33 Liu, H., Yazici, H., Ergun, C., Webster, T. J., Bermek, H., An in vitro evaluation of the Ca/P ratio for the cytocompatibility of nano-to-micron particulate calcium phosphates for bone regeneration, Acta Biomaterialia 4, 1472-1479 (2008).
34 Hench, L. L., Paschall, H. A., Direct Chemical Bonding between Bio-Active Glass-Ceramic Materials and Bone, J. Biomed. Mater. Res. Symp., 4, 25-42 (1973).
35 Kim, C. Y., Clark, A. E., Hench, L. L., Early stages of calcium-phosphate layer formation in bioglasses, J. Non-Crys. Solids 113, 195-202 (1989).
Copyright
© 2010 Göller Verlag