Articles
All articles | Recent articles
Failure Resistance Optimisation in Layered Ceramics Designed with Strong Interfaces
Raúl Bermejo, Robert Danzer
Institut für Struktur- und Funktionskeramik (ISFK), Montanuniversität Leoben (Institute for Structural and Functional Ceramics, University of Leoben), 8700 Leoben, Austria
received April 07, 2010, received in revised form May 08, 2010, accepted May 10, 2010
Vol. 1, No. 1, Pages 15-20 DOI: 10.4416/JCST2010-00007
Abstract
Layered ceramics designed with weak interfaces favour interface delamination and provide high failure resistance, while laminates with strong interfaces show higher strength and enhanced mechanical reliability. In this paper it is proposed to combine crack bifurcation and interface delamination in a unique layered architecture with strong interfaces to optimise both failure resistance and mechanical reliability.
Theoretical approaches from He and Hutchinson for delamination in bi-materials and from Lange et al. for crack bifurcation in multilayers are here employed to define an optimal design. These approaches are supported by own experimental results on an alumina-zirconia multilayer system designed with compressive stresses and strong interfaces. It is shown that a favourable condition for interface delamination occurs for bifurcated cracks if such cracks have a low inclination angle towards the next interface. The occurrence of bifurcation is triggered by the thickness of the compressive layers as well as by the compressive stresses, which also influence the bifurcation angle. Therefore, they are the key features for optimising these multilayered systems.
Download Full Article (PDF)
Keywords
Layered ceramics, failure resistance, crack bifurcation, interface delamination.
References
1 Clegg, W. J., Kendall, K., Alford, N. M., Button, T. W., Birchall, J. D., A simple way to make tough ceramics, Nature, 347 455-7 (1990).
2 Padture, N. P., Lawn, B. R., Toughness Properties of a Silicon Carbide with an in Situ Induced Heterogeneous Grain Structure, J. Am. Ceram. Soc., 77 2518 (1994).
3 Prakash, O., Sarkar, P., Nicholson, P. S., Crack Deflection in Ceramic/Ceramic Laminates with Strong Interfaces, J. Am. Ceram. Soc., 78 [4] 1125-7 (1995).
4 Marschall, D. B., Morgan, P. E. D., Housley, R. M., Debonding in multilayered composites of zirconia and LaPO4, J. Am. Ceram. Soc., 80 [7] 1677-83 (1997).
5 Clegg, W. J., Design of ceramic laminates for structural applications, Mater. Sci. Tech., 14 483-95 (1998).
6 Li, D., Qiao, G., Jin, Z., R-curve behavior of laminated SiC/BN ceramics, Ceram. Internat., 30 213-7 (2004).
7 Ceylan, A., Fuierer, P. A., Fracture toughness of alumina/lanthanum titanate laminate composites with weak interface, Materials Letters, 61 551-5 (2007).
8 Tomaszewski, H., Weglarz, H., Wajler, A., Boniecki, M., Kalinski, D., Multilayer ceramic composites with high failure resistance, J. Eur. Ceram. Soc., 27 1373-7 (2007).
9 Marshall, D. B., Ratto, J. J., Lange, F., Enhanced fracture toughness in layered microcomposites of Ce-ZrO2 and Al2O3, J. Am. Ceram. Soc., 74 [12] 2979-87 (1991).
10 Russo, C. J., Harmer, M. P., Chan, H. M., Miller, G. A., Design of a laminated ceramic composite for improved strength and toughness, J. Am. Ceram. Soc., 75 [12] 3396-4000 (1992).
11 Sanchez-Herencia, J., Moya, J., Tomsia, A., Microstructural design in alumina-alumina/zirconia layered composites, Scripta Mater., 38 [1] 1-5 (1998).
12 Moon, R. J., Bowman, K. J., Trumble, K. P., Rödel, J., Fracture resistance curve behavior of multilayered alumina-zirconia composites produced by centrifugation, Acta Mater., 49 995-1003 (2001).
13 Lakshminarayanan, R., Shetty, D. K., Cutler, R. A., Toughening of layered ceramic composites with residual surface compression, J. Am. Ceram. Soc., 79 [1] 79-87 (1996).
14 Rao, M., Sanchez-Herencia, J., Beltz, G., McMeeking, R. M., Lange, F., Laminar ceramics that exhibit a threshold strength, Science, 286 102-5 (1999).
15 Pascual, J., Chalvet, F., Lube, T., De Portu, G., Strength distributions of ceramic laminates, Mater. Sci. Forum, 492-493 581-6 (2005).
16 Sglavo, V. M., Paternoster, M., Bertoldi, M., Tailored residual stresses in high reliability alumina-mullite ceramic laminates, J. Am. Ceram. Soc., 88 [10] 2826-32 (2005).
17 Lugovy, M., Slyunyayev, V., Orlovskaya, N., Blugan, G., Kuebler, J., Lewis, M., Apparent fracture toughness of Si3N4-based laminates with residual compressive or tensile stresses in surface layers, Acta Mater., 53 289-96 (2005).
18 Sajgalík,P., Lencés, Z., Dusza, J., Layered composites with self-diagnostic ability, Comp B: Engineering., 37 [6] 515-23 (2006).
19 Bermejo, R., Torres, Y., Sanchez-Herencia, A. J., Baudín, C., Anglada, M., Llanes, L., Residual stresses, strength and toughness of laminates with different layer thickness ratios, Acta Mater., 54 4745-57 (2006).
20 Bermejo, R., Torres, Y., Baudin, C., Sánchez-Herencia, A. J., Pascual, J., Anglada, M., Llanes, L., Threshold strength evaluation on an Al2O3-ZrO2 multilayered system, J. Eur. Ceram. Soc., 27 [2-3] 1443-8 (2007).
21 Jianxin, D., Zhenxing, D., Dongling, Y., Hui, Z., Xing, A., Jun, Z., Fabrication and performance of Al2O3/(W,Ti)C + Al2O3/TiC multilayered ceramic cutting tools, Materials Science and Engineering: A, 527 [4-5] 1039-47 (2010).
22 Pontin, M. G., Rao, M., Sanchez-Herencia, J., Lange, F., Laminar ceramics utilizing the zirconia tetragonal-to-monoclinic phase transformation to obtain a threshold strength, J. Am. Ceram. Soc., 85 [12] 3041-8 (2002).
23 Orlovskaya, N., Kübler, J., Subbotin, V., Lugovy, M., High toughness ceramic laminates by design of residual stress, Mat. Res. Soc. Symp. Proc, 702 (2002).
24 Bermejo, R., Llanes, L., Anglada, M., Supancic, P., Lube, T., Thermal shock behavior of an Al2O3/ZrO2 multilayered ceramic with residual stresses due to phase transformations, Key Eng. Mater., 290 191-8 (2005).
25 Bermejo, R., Torres, Y., Anglada, M., Llanes, L., Fatigue behavior of alumina-zirconia multilayered ceramics, J. Am. Ceram. Soc., 91 [5] 1618-25 (2008).
26 Sanchez-Herencia, A. J., James, L., Lange, F. F., Bifurcation in alumina plates produced by a phase transformation in central, alumina/zirconia thin layers, J. Eur. Ceram. Soc., 20 [9] 1297-300 (2000).
27 Lube, T., Pascual, J., Chalvet, F., De Portu, G., Effective fracture toughness in Al2O3 – Al2O3/ZrO2 laminates, J. Eur. Ceram. Soc., 27 1449-53 (2007).
28 Chen, C. R., Pascual, J., Fischer, F. D., Kolednik, O., Danzer, R., Prediction of the fracture toughness of a ceramic multilayer composite – Modelling and experiments, Acta Mater., 55 [2] 409-21 (2007).
29 He, M. Y., Hutchinson, J. W., Crack deflection at an interface between dissimilar elastic materials, Int. J. Solids Structures, 25 [9] 1053-67 (1989).
30 Bermejo, R., A. J., Sanchez-Herencia, Llanes, L., Baudín, C., High-temperature mechanical behaviour of flaw tolerant alumina-zirconia multilayered ceramics, Acta Mater., 55 [14] 4891-901 (2007).
31 Dundurs, J., Edge-bonded dissimilar orthogonal elastic wedges, J. Appl. Mech., 36 650-2 (1969).
32 Bermejo, R., Sánchez-Herencia, A. J., Llanes, L., Baudín, C., High-temperature mechanical behaviour of flaw tolerant alumina-zirconia multilayered ceramics, Acta Mater., 55 [14] 4891-901 (2007).
33 Bermejo, R., Pascual, J., Lube, T., Danzer, R., Optimal strength and toughness of Al2O3-ZrO2 laminates designed with external or internal compressive layers, J. Eur. Ceram. Soc., 28 [8] 1575-83 (2008).
34 Bermejo, R., Baudín, C., Moreno, R., Llanes, L., Sánchez-Herencia, A. J., Processing optimisation and fracture behaviour of layered ceramic composites with highly compressive layers, Comp. Sci. Tech., 67 [9] 1930-8 (2007).
35 Bermejo, R., Torres Hernández, Y., Sánchez-Herencia, A. J., Baudín, C., Anglada, M., Llanes, L., Fracture behaviour of an Al2O3-ZrO2 multi-layered ceramic with residual stresses due to phase transformations, Fatigue Fract. Engng. Mater. Struct., 29 71-8 (2006).
36 Ho, S., Hillman, C., Lange, F. F., Suo, Z., Surface cracking in layers under biaxial, residual compressive stress, J. Am. Ceram. Soc., 78 [9] 2353-9 (1995).
37 Sanchez-Herencia, A. J., Pascual, C., He, J., Lange, F., ZrO2/ZrO2 layered composites for crack bifurcation, J. Am. Ceram. Soc., 82 [6] 1512-8 (1999).
38 He, M. Y., Bartlett, A., Evans, A. G., Hutchinson, J. W., Kinking of a crack out of an interface: Role of In-Plane Stress, J. Am. Ceram. Soc., 74 [4] 767-71 (1991).
39 Tattersal, H. G., Tapin, G., The work of fracture and its measurements in metals, ceramics and other materials, J. Mater. Sci., 1 296-301 (1966).
40 Oechsner, M., Hillman, C., Lange, F., Crack bifurcation in laminar ceramic composites, J. Am. Ceram. Soc., 79 [7] 1834-8 (1996).
41 Hbaieb, K., McMeeking, R., Lange, F., Crack bifurcation in laminar ceramics having large compressive stress, Int. J. Solids and Struct., 44 [10] 3328-43 (2007).
42 Bahr, H., Pham, V., Weiss, H., Bahr, U., Streubig, M., Balke, H., Ulbricht, V., Threshold strength prediction for laminar ceramics from bifurcated crack path simulation, Int. J. Mat. Research, 98 683-91 (2007).
Copyright
© 2010 Göller Verlag